Neitwork Functions

EEXN| nTrODUCTION

A network function gives the relation between currents or voltages at different parts of the network. It is
broadly classified as driving point and transfer function. It is associated with terminals and ports.

Any network may be represented schematically by a rectangular box. Terminals are needed to connect any
network to any other network or for taking some measurements. Two such associated terminals are called
terminal pair or port. If there is only one pair of terminals in the network, it is called a one-port network.
If there are two pairs of terminals, it is called a two-port network. The port to which energy source is connected
is called the input port. The port to which load is connected is known as the output port. One such network
having only one pair of terminals (1 — 1) is shown in Fig. 12.1 (a) and is called one-port network. Figure
12.1 (b) shows a two-port network with two pairs of terminals. The terminals 1 — 1” together constitute a port.
Similarly, the terminals 2 — 2” constitute another port.

/ I I
1 + One- 1 + Two- +2
V4 port 2 port Vs
17 G network 15 network S o
(a) (b)

Fig.12.1 (a) One-port network (b) Two-port network

A voltage and current are assigned to each of the two ports. V| and /; are assigned to the input port,
whereas V, and I, are assigned to the output port. It is also assumed that currents /, and /, are entering into
the network at the upper terminals 1 and 2 respectively.

EE®3| orivING-POINT FUNCTIONS

If excitation and response are measured at the same ports, the network function is known as the driving-point
function. For a one-port network, only one voltage and current are specified and hence only one network
function (and its reciprocal) can be defined.



12.2 Network Analysis and Synthesis

1.

Driving-point Impedance Function 1t is defined as the ratio of the voltage transform at one port
to the current transform at the same port. It is denoted by Z (s).
_Vs)

I(s)

Driving-point Admittance Function 1t is defined as the ratio of the current transform at one port
to the voltage transform at the same port. It is denoted by Y (s).

1(s)

Vi(s)

For a two-port network, the driving-point impedance function and driving-point admittance function at
port 1 are

Z(s)

Y(s)=

-

_hts)

Similarly, at port 2, BTG
Zo(s) = Z_Eg

Yoa(s) = Z_Eg

BEEN| TRANSFER FUNCTIONS

The transfer function is used to describe networks which have at least two ports. It relates a voltage or current
at one port to the voltage or current at another port. These functions are also defined as the ratio of a response
transform to an excitation transform. Thus, there are four possible forms of transfer functions.

1.

Voltage Transfer Function 1t is defined as the ratio of the voltage transform at one port to the
voltage transform at another port. It is denoted by G (s).

_a(s)
Gia(s) = —V1 (s)
_Vi(s)
Gr(s) = 72(5)

Current Transfer Function 1t is defined as the ratio of the current transform at one port to the current
transform at another port. It is denoted by & (s).

_Ir(s)
ony(s) = 1(s)
01(s) = hi(s)

I(s)



12.3 Transfer Functions 12.3

3. Transfer Impedance Function 1t is defined as the ratio of the voltage transform at one port to the
current transform at another port. It is denoted by Z (s).

_Va(s)
Ziy(s)= 7(s)
_ Nils)
Zn(s)= 1h(s)

4. Transfer Admittance Function 1t is defined as the ratio of the current transform at one port to the
voltage transform at another port. It denoted by Y (s).

I (s)
Yio(s) = —V1 (s)
_ 1Li(s)
Yoi(s) = 72(s)

" SCINI WY Determine the driving-point impedance function of a one-port network shown in Fig. 12.2.

R
o "V
—c L
o]
Fig. 12.2 o A,
Solution The transformed network is shown in Fig. 12.3.
| R A9 L1 Ls
S
25— a(R+Ls) B R+ Ls L s+z
= = : =— o
—+(R+LS) LCs“+ RCs+1 CS2+£S+L ]
Cs L"LC Fig. 12.3

" SEINICUYWE  Determine the driving-point impedance of the network shown in Fig. 12.4.

2s 2s
o o0 7000
1 1
Z(s) — m— —
O
Fig.12.4
Solution
1 1 1 1 1 1
—| 2s+— —| 2s+— — 3 —
s( * 2s] ZS( * 2s) 25+ s 4s+8s +2S+zs 16s* +125% +1
Z(s)=2s+ =2 > =25+ > = 5 = :
1 2+4s 2+4s 2+4s 8s” +4s




12.4 Network Analysis and Synthesis

" SEINICRYIERN  Determine the driving-point impedance of the network shown in Fig. 12.5.

1 1
S S
° || ||
Z(8) — s s
O
Fig. 12.5
Solution
S1+S
1 s 1 (I+s%)s 1 s+s°  s*+3s2+1
Z(s)=—+ I =—+-— =—t+———= 3
S oylyg S 2s+1 s 257 +1 28" +s
S

" SENACRYRR  Find the driving-point admittance function of the network shown in Fig. 12.6.

Y(s) —>
O
Fig. 12.6
Solution
oL
1 2s 1 s 30s* +155% + 252 +1+ 55 30s* +2252 +1
Z(S):3S+—+ =35+ — 5 = > — .
50 1 55 257 +1 55 (2% +1) 55(25° +1)
2s
1 5s5(25°+))

Y(S) = =
Z(s) 30s*+225% +1

" SEINICWYIW  Find the transfer impedance function Z 1,(5) for the network shown in Fig. 12.7.

l1 (s)

. L
st

Fig. 12.7



12.4 Analysis of Ladder Networks

")
Solution Va(s)=I(s)——= cs
1
R+—
Cs
Va(s) R
Ii(s) RCs+1
Zix(s) = Va(s) 1

W0 e 1)
RC

" SEINI MY  Find voltage transfer function of the two-port network shown in Fig. 12.8.

l(s) R I(s)
o—> AVAVAY, < °
Vy(s) —_— é Vo(s)
o o
Fig.12.8

Solution By voltage division rule,

Va(s) = () =S = Vi) =

R + - S S + JR—
Cs RC
1
. V. RC
Voltage transfer function 2(5) - _RC
RC

EEXN| ANALYSIS OF LADDER NETWORKS

The network functions of a ladder network can be I

12.5

obtained by a simple method. This method depends 3
upon the relationships that exist between the branch
currents and node voltages of the ladder network. Vi Y2 Ys
Consider the network shown in Fig. 12.9 where all the

o |

impedances are connected in series branches and all

the admittances are connected in parallel branches.
Analysis is done by writing the set of equations. Fig.12.9 Ladder network

In writing these equations, we begin at the port 2 of

the ladder and work towards the port 1.

V,=V,

L=Y.7,

V.=Z,1,+V,=(ZY,+1)V,
L=Y,V,+1,=[Y,(Z, Y,+ )+ Y]V,

Vi=Z L+ V,=[Z, Y, (Z, Y, + D)+ Y} +(Z, Y, + D] V,



12.6 Network Analysis and Synthesis

Thus, each succeeding equation takes into account one new impedance or admittance. Except the first two
equations, each subsequent equation is obtained by multiplying the equation just preceding it by imittance
(either impedance or admittance) that is next down the line and then adding to this product the equation twice
preceding it. After writing these equations, we can obtain any network function.

V.
" Example WA  For the network shown in Fig. 12.10, determine transfer function 72

1

Lo1Q 1Q =0
o——ANN NN ~< o
+ +
Vi —_1F ——1F V2
o o
Fig. 12.10
Solution The transformed network is shown in Fig. 12.11.
v, =V, I 1 Vv, 1 bV l,=0
V. + +
Iy =—F=5sV, 1 ]
— V1 < S V2

S S
S
Va=11b+V2 5 T T 5

=sV+V, =(s+1)1;

y ; Fig. 12.11
A =T”+1b =sV,+1p=s(s+D)Va+ sV, =(s" +25)V;

s
V=144V, =(s* +25)Va+(s+ D)Vs = (s> +3s+ 1)V,
12 1

Hence, = m—
N s"+3s+1

%
" SENACRYRR  For the network shown in Fig. 12.12, determine the voltage transfer function V—2

v Vo
O O
Fig. 12.12
Solution V,=V,
Q:%:%
V,=sly+V, =sVr, +V, =(s+ 1)),

11 =%+Ih :(.S‘+1)V2+V2 =(S+2)V2

Vi=sh+V, =s(s+2)Va+(s+1)Vo = (s> +3s+1)V>



12.4 Analysis of Ladder Networks 12.7

43 1

Hence, ==
Vi s”+3s+1

" v 1Z
" SEINIMYER  Find the network functions ]—1,—2 and [—2 for the network shown in Fig. 12.13.
1

1 1

I 1H 1H L=0
O—>—"000——T—000" < o
+ +
Vi ——1F ——1F Va
o o
Fig. 12.13
Solution The transformed network is shown in Fig. 12.14.
Ve =V1> ; 5 ¢ NI i
+ +
Vs
[b =—= SV2 V1 1 V2

1

1 3 3

s T T
O

Vo=sly+Vy =s(sVa)+Vs =(s>+1)V,  ©

Va
L=t Dy =sVyt Iy =5 + ) +sV = (s +25)0

s
N=sh+V, :s(s3 +2s)V, +(s2 +1)V, =(s4 +25% +5° +1)V, =(s4 +3s2+1)V2

Vi st43st 41

Hence,
I s° +2s
vl
N st 4357 +1
& 1
Vi s +2s

1

v, V. v
" SEINICRYMON  Find the network functions 1—1,72, and 1—2 for the network in Fig. 12.15.
1V

1
1
oot 3H I,=0
+0—>—|| 000 < °
Vi %H _—2F Vs
o )

Fig. 12.15



12.8 Network Analysis and Synthesis

Solution The transformed network is shown in Fig. 12.16.

4
V, =V -
b 2 I1 |s| \/a 33 Ib Vb I2=0
[b=%=2sVz . a il l :
_ 1
2s Vi % 23 Vs
V,=3sl,+V, =3s(2sVa)+V, = (65> + 1)V, - T s
v, 2 14s% +2 .
Il:—”+I,,:—(6s2+1)V2+2sV2=[ i ]Vz Fig.12.16
S S S
2
4 4(14s* +2 65t +57s* +8
V1=—11+Va=—( d ]Vz+<6s2+1)Vz=[% v,
S S S
Vi 6s*+57s>+38
Hence, =
I 145> + 25
o s8
Vi 6s*+57s*+8
V_z_ K
L 145 +2

" SENNCHYREN  For the ladder network of Fig. 12.17, find the driving point-impedance at the I — 1

terminal with 2 — 2’ open.

I, 1Q 1H 1Q 1H 1Q 1H =0
1 0 AAA—TTT A~ T AN T2t 2
+ +
Vi —1F ——1F —1F Va
o o2
Fig. 12.17
Solution The transformed network is shown in Fig. 12.18.
L1 s V, 1 s v, 1 s V. =0
1 2
+ I, Iy +
V. 1 1 1 V.
| [ Ik .
1, 5 5 2/

Fig. 12.18



12.4 Analysis of Ladder Networks 12.9
Ve=(s+D) I, 4Va= (s+)shh+Va = (s> +s+ 1)1,

”
Ia:T"
S

+1y=sVy+1, =5 +s+D)Va+sVs =(s° + 5> +25)Vs
Veo=(s+0) I, +Vy =(s+1)(s° + 5 +2) Vo + (s> +s+ D)V =(s* +25° +4s* +3s + DV,

I =%+la =sV,+1,=s(s*+ 25 + 45> +3s+ )V + (s> + 5% + 25)V;

A
=(s5 +2s* +55% + 452 +35)1,
Vi=(s+D)L+V, =(s+D(s° +2s* +55° +4s2 +35)V5 + (s +25° + 45> + 3s + DI,
=(s® +35° +8s" +115° + 112 + 65+ )V,
Vi %4357 +8s +115° +115% +65+1
I s° +2s* +55° + 45 +3s

1

14 1Q 2H I,=0
oA\ 7000 —
+ +
Vi ——1F —1F 10 Vs

o}
Ol

Fig. 12.19
Solution The transformed network is shown in Fig. 12.20.

VCZVb =V2

V, V;
I,=1,+1. =T2+T2:SV2+V2 =(s+Dhlh Vv,

s —
o,
Va =2S[u +V2 =2S(S+1)V2 +V2

; Fig. 12.20
= (25 +2s5+1)V;

;
I =T“+1{, =sV,+1, =522 +2s+ )V +(s+1)Vy = (25 +25° + 25+ 1)V

S
N=1h+V, =25 425> + 25 +1)Vs + (25> 4+ 25+ 1) V5 = (25> + 45> + 45+ 2) V;
1 1

Vi 25° +45% +45+2

Hence,



12.10 Network Analysis and Synthesis

!
" SEINICRYRMER  For the network shown in Fig. 12.21, determine the transfer function 72

1

3
> Q
L A 1Q lp =0
o—>— 2 F NN\ < -« o)
+ 3 +
| | 1
o o
Fig.12.21
Solution The transformed network is shown in Fig. 12.22.
3
2
I1 %— 1 Va I2 Vb I=0
o—>—1 3 AAA—9— <o «~ o0
+ 2s I, Iy +
| |
Z H 1 1 V
—" 2s 6

Fig. 12.22
Vy=V,=V,
,
]1=[a+[b=T+T=2SV2+6V2 =(2s+6)1,
25 6
3>< 3
2 ag 65+15 2s+5)(s+3
V= 2 2s 4 11+V2:( +1)11+V2:M(25+6)V2+V2: wﬂ
3.3 65+6 65+6 (s+1)
2 2s
[(25+5)(s+3)+(s+1) 25% +65+5s+15+s+1 257 +125+16
| s+1 s+1 s+1

_2(s +65+8)  _ 2(s+4)(s+2)

2
s+1 s+1
Also, L=-1,=-6V,
1_2_ 3(s+1)

Vi (s+4)s+2)

Z

I
" SENICHYRMEN  For the network shown in Fig. 12.23, compute o5 (s) = 2 and Z;, (s) =

1Q

I

Al

>
>

AAYAY

h Vi —=1F

—_—1F

+ O

Vo

Fig. 12.23

I

V)

I

Jr



12.4 Analysis of Ladder Networks 12.11

Solution The transformed network is shown in Fig. 12.24.

V.
L=-2=sV, h — 1

1
1 ZB— 1 v,
s ) [
N=10L+V,=sV+V, = (S+1)V2
Vi 5 Fig. 12.24
I :T+]2 =sV+ L =s(s+ )V +5V, =(s" +25)1>
s
I, 1
o (s)=—=
Hence, ©012(s) I 512
v 1
and le(S):—zz >
Iy 5" +2s
. . V2 . ]2 . VZ
SEINICWMYREW  Determine the voltage ratio 7 current ratio I—,transfer impedance 7 and
1 1 1
- o Vi -
driving- point impedance T for the network shown in Fig. 12.25.
1
3Q
I-| %— 3 H /2 I:O
O—>— 1 000 > «—o0
+ 3F +
| ] 2Q
v, ' —1F Qv
1
1F
5 T2 5

Fig. 12.25

Fig. 12.26
chVb—Vz
V-
12—T2=V2
vV, V- 3542
Ia:]b+]2: 2 +—2:LV2+V2: 5 Vz
) 2 1 2542 2s+2
+i
S
3s(3s+2 9s% +85+2
V=351, +V, = 5054 2y, Ly |5 48sH2 ),
2s+2 2s+2



12.12 Network Analysis and Synthesis

2 3 2
[1:Q+10=SVH+]CI:S(9S +8s+2)V " 3s+2 v, = 9s” +8s" +5s5+2 v,
l 2s+2 2s+2 2s+2
S
3 3 3 \(95% +852 +55+2 952 +85+2
Vi=|—2\h+V, =| = |6 +V, = Vy+| ———Z |1,
3 3 s+1 s+1 25 +2 25+2
+_..
S
2757 + 2457 +155+6+95° +857 +25+95° +85+2 | (365> +41s> +255+8)
(s+1)(25+2) (s+1)(2s+2) ’
(365 +41s% +255+8 .
25 +4s+2 :
25> +4s5+2
Hence, &: 3S 2S
Vi 36s” +41s” +25s+8
I _ 2s+2
I 95° +8s% +55+2
n_ 2542
I 9% +8s> +55+2
Vi 3657 +41s7 +255+8 365’ +41s° +255+8
I (s+1)(9s° +8s2 +55+2) 9s* +17s° +13s> + 7s+2
. . Vo Vo I 1
" SEINI YR  For the resistive two-port network of Fig. 12.27, find —,—,—= and —=.
Vi 1V I
l 2Q 2Q 2Q b
o—> NV AVAVAY NVN—————=—
+ +
Vi §1Q §1Q §1Q v, §1Q
o .
Fig. 12.27
Solution The network is redrawn as shown in Fig. 12.28.
LV 2 v, 2 v, 2 Iy
o> A—>— W\ ANA——o———
+ Ia Ib +
v, 1 1 1 Vs § 1

Fig. 12.28



12.4 Analysis of Ladder Networks 12.13

V.
L=-2=-1,
1

Vy=-31, =3V,

Ve V, 4
I,=2+2="p =4y
b 1 3 3 b 2
Va=2[b+Vb=8V2+3V2=11V2

Vy

Ia:T+[b:11V2+4V2:15V2

N=21,+V,=30V,+11V, =41V,

.
I, :T‘+1d =41V, +15V, =56V,

Hence, ﬁzi
o 41
nh_1
I, 56
I 1
2-__ 0O
" 41
L__ 1
1 56

v
" SEINICRYMYE  Find the network function 72 for the network shown in Fig. 12.29.
1

2V.
I 10 1Q ! =0
O/ % & < o

Fig. 12.29

Solution The network is redrawn as shown in Fig. 12.30.

o> ANV ¥ - ~o

Fig. 12.30



12.14 Network Analysis and Synthesis

From Fig. 12.30,
V,=131)=31,
Applying KVL to the outermost loop,
Vvi-1Ud)-131)-2V,-131)=0

Vi=-T71,
V.

Hence, 2= —E
" 7

1
" SENACHYREN  Find the network function 1—2 for the network shown in Fig. 12.31.
1

o
_3 AN < o
+
Ia
h
I; § 1Q 1Q T > § 1Q v,
o
Fig. 12.31
Solution The network is redrawn as shown in Fig. 12.32.
2] / I
@ Ia+l2+51 2 /2+E L
< < ')
+
/
I T 51 v,

Fig. 12.32

From Fig. 12.32,

I
1=11+1a+12+31

3
=Ell+la+]2

Applying KVL to the loop abcda,
-17/-11,-21,=0
-1-31,=0
I+31,=0

()

...(ii)



12.5 Analysis of Non-Ladder Networks 12.15

Substituting Eq. (i) in Eq. (ii),
3
5[1 +[a +[2 +3[a = 0

3
5114-[2 +4[a:0 (111)

Applying KVL to the loop dcefd,

I
11d—112—2(12+3‘)=0

Ia—31,2 —[] :0
1,=3L+1 (IV)

Substituting Eq. (iv) in Eq. (ii1),

%]] +1, +4(3[2 +11)=0

3
511+[2 +121,+41,=0

11
?[] +137, =0
11
137, =——1
2 > 1
1
Hence, —2=—£
I 26

EEXR| ANALYSIS OF NON-LADDER NETWORKS

The above method is applicable for ladder networks. There are other network configurations to which the
technique described is not applicable. Figure 12.33 shows one such network.

Z
L1
I 4 % I
o' ] ] < o
+ +
V1 Z3 V2
o o

Fig.12.33 Non-ladder network

For such a type of network, it is necessary to express the network functions as a quotient of determinants,
formulated on KVL and KCL basis.



12.16 Network Analysis and Synthesis

V, Vo I I/
" SEINICWYRER  For the resistive bridged T network shown in Fig. 12.34, find 222 2 and 2.

Vi LV I,

Q
[l
Q
A

+ 0

<
o
o
o)
o~

1Q
_ 1 I, _
O
Fig. 12.34
Solution Applying KVL to Mesh 1,
Vi=151,+05L, -1, (1)
Applying KVL to Mesh 2,
0=051,+25L+1, ...(11)
Applying KVL to Mesh 3,
0=-1,+1,+41 ...(1i1)
Writing these equations in matrix form,
vl [1.5 05 -1][p
0 -1 1 4|1
i 05 -1
0 25 1
PO N L | I 1l B (JV)
A |15 05 -1 9
05 25 1
-1 1 4
L5 n -1
05 0 1
Ay -1 0 4 -2+ 1
2TA s 05 -1 9 3! ®
05 25 1
-1 1 4
From Fig. 12.34, V,=-1(,)=-1,
From Eq. (v), V,=-31,
1 1
From Egs. (iv) and (v), I Z—ng 2—511
L =-31,
I 1
Hence, 2-__0



1
n 3"
L W3
v, I, 1
Vi 3L, 3
a_-h _1g
L =305, 3

12.5 Analysis of Non-Ladder Networks 12.17

" SETNAMYIWIN  For the network of Fig. 12.35, find Z,, Z,, and G .

+ 0O

Fig. 12.35

Solution The network can be redrawn as shown in Fig. 12.36. Since the network consists of two identical
impedances connected in parallel, the current in /; divides equally in each branch.

I o h
2 + >
"W Z,+Z2 Z
le __1= a b b
A 2
v, A
Il [] I] —
Vy=Zy -7, 2L |=(z,-72,)2
2= 2 (2J (Zy )2 z,
v, Z,-Z, _
Zo= = °
! Fig.12.36
By voltage-division rule,
Z Z Zy—72
V2 — b Vl _ a Vl — b a
Za+Zb Za+Zb Za+Zb
Vo  Zy—Z,
G =—2=2b
V. Z,+7,

" SENICHYWEN  For the network shown in Fig. 12.37, determine Z,,0),G,,(s)and Z, (s).



12.18 Network Analysis and Synthesis

1F
|
/1 1 Q 1 Q I2=0
o— AN A «~—o
+ +
Vi _—1F Vs
IS o
Fig. 12.37
Solution The transformed network is shown in Fig. 12.38.
1
S
i
1 ID 1 I,=0
o NV NV < 0
+ +
2 ) —1 Vo
I1
o o
Fig. 12.38

Applying KVL to Mesh 1,

1
V:(1+ L -1
1 k s)l 3
Applying KVL to Mesh 2,
1
Vo =—11+1z
s

Applying KVL to Mesh 3,

1
—11+(2+—J ]3 =0
s
s
;= I
’ (2s+l)l

(J(

Substituting Eq. (iii) in Egs. (1) and (i1),

s s+ 2s5+1
V)= 1= —=
2s+1 s(2s+1)
2
+3s+1
Hence, Zi(s )—— SOt
L s(2s+1)
2
sT+2s+1
le(S)—— —
I s(2s+1)
2
, s +2s+1
Glz(S):—ZZ—

o s*+3s+1

il

...(ii)

...(iii)

2
s I = s”+3s5+1 I
2s+1 s(2s+1)



12.5 Analysis of Non-Ladder Networks 12.19

" SEINICWYWIYR  For the network shown in Fig.12.39, find the driving-point admittance Y, and

transfer admittance Y .

1Q
NV
1F 1F
Il | | | | I42
g Il [ -
+
“ () . .
Fig. 12.39
Solution The transformed network is shown in Fig. 12.40.
1
VW 1
h s I;) s If

> | |

4

+
v, Cf) ] ’zq 1
;

Fig. 12.40
Applying KVL to Mesh 1,
1 1
I/i:(—+1)[1+]2——[3 (1)
ks s
Applying KVL to Mesh 2,
(.1 1
0:[1+L2+— L+-1; (11)
s s
Applying KVL to Mesh 3,
1 1 2
O=—-5L+-1, +(—+l)l3 (111)
s s s
Writing these equations in matrix from,
g .
-+1 1 ——
s s
4 11 11D
Ol= I 2+- - ||,
s s
0 11 2 =
—— - —+1
| s s s
A
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1
—+1 1

_ s?+55+2

Hence,

Hence,

e o (G e s e e oA R )

1
heoto -
§ 2
11 1\( 2 i 252 +55+1
A=10 24— - =Vl[(2+—)(—+1)——2]:m(q—2sj
S S S S S S
1 2
0 - —+1
S S
25 +55+1
11=V1[ 5 ]
s +5s+2
I 25> +5s+1
Y=
o s +5s+2
A,
=22
SN
I i
__|_1 Vl —_
§ 2
1 2 1 +2s+1
Ay=| 1 0 = =—Vl(—+1+—2)=—Vl(%}
S S S S
1 2
-—— 0 —+1
S S

2
sT+2s+1
Ihy=-N 2 . ..
s +5s+2
I s2+2s+1

Yp=—=-
" s +55+2

BEXA| PoOLES AND ZEROS OF NETWORK FUNCTIONS

The network function F(s) can be written as ratio of two polynomials.

where a, a, ...,

and positive for networks of passive elements. Let N(s) = 0 have n roots as z,, z,,

Ly 4a s+ag
ml iy +b s+h

N(s) _
D(s)

a,s" +a, | s

F(s)=

bys™ + b,y S

a,and by, b, ..., b, are the coefficients of the polynomials N(s) and D(s). These are real

.......

z, and D(s) = 0

have mroots as p,, p,, ...... , P, Then F(s) can be written as
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(s—z)(s—23)..(5— 24)

F(s)=H
(s=p)s—p2)..(s= pm)
where 2 is a constant called scale factor and z|, z,, ..., z,, p|, P,, ..., P,, are complex frequencies. When
m
the variable s has the values z,, z,, ..., z,, the network function becomes zero; such complex frequencies

are known as the zeros of the network function. When the variable s has values p,, p,, ..., p,,, the network
function becomes infinite; such complex frequencies are known as the poles of the network function.
A network function is completely specified by its poles, zeros and the scale factor.

If the poles or zeros are not repeated, then the function is said to be having simple poles or simple zeros. If
the poles or zeros are repeated, then the function is said to be having multiple poles or multiple zeros. When
n > m, then (n — m) zeros are at s = oo, and for m > n, (m — n) poles are at s = oo,

The total number of zeros is equal to the total number of poles. For any
network function, poles and zeros at zero and infinity are taken into account
in addition to finite poles and zeros.

Poles and zeros are critical frequencies. The network function becomes |
infinite at poles, while the network function becomes zero at zeros. The E o > o

===-1

network function has a finite, non-zero value at other frequencies.

Poles and zeros provide a representation of a network function as shown X ===
in Fig. 12.41. The zeros are shown by circles and the poles by crosses. This
diagram is referred to as pole-zero plot. Fig. 12.41 Pole-zero plot

‘

(1) The coefficients in the polynomials N(s) and D(s) must be real and positive.

RESTRICTIONS ON POLE AND ZERO LOCATIONS FOR DRIVING-POINT
FUNCTIONS [COMMON FACTORS IN N(s) AND D(s) CANCELLED]

(2) The poles and zeros, if complex or imaginary, must occur in conjugate pairs.

(3) The real part of all poles and zeros, must be negative or zero, i.e., the poles and zeros must lie in
left half of s plane.

(4) If the real part of pole or zero is zero, then that pole or zero must be simple.

(5) The polynomials N(s) and D(s) may not have missing terms between those of highest and lowest
degree, unless all even or all odd terms are missing.

(6) The degree of N(s) and D(s) may differ by either zero or one only. This condition prevents
multiple poles and zeros at s = oo.

(7)  The terms of lowest degree in N(s) and D(s) may differ in degree by one at most. This condition

prevents multiple poles and zeros at s = 0.

(1)  The coefficients in the polynomials N(s) and D(s) must be real, and those for D(s) must be positive.

RESTRICTIONS ON POLE AND ZERO LOCATIONS FOR TRANSFER
FUNCTIONS [COMMON FACTORS IN N(S) AND D(S) CANCELLED]

(2) The poles and zeros, if complex or imaginary, must occur in conjugate pairs.

(3) The real part of poles must be negative or zero. If the real part is zero, then that pole must be
simple.

(4) The polynomial D(s) may not have any missing terms between that of highest and lowest degree,
unless all even or all odd terms are missing.
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(5) The polynomial N(s) may have terms missing between the terms of lowest and highest degree,
and some of the coefficients may be negative.

(6) The degree of N(s) may be as small as zero, independent of the degree of D(s).
(7) For voltage and current transfer functions, the maximum degree of N(s) is the degree of D(s).

(8) For transfer impedance and admittance functions, the maximum degree of N(s) is the degree of
D(s) plus one.

" Example IWWEN Test whether the following represent driving-point immittance functions.

5% 4357 —25+1 ) s +s+ 5542 © s?+35+2
R ¢) — 2 <
s> +6s+20 sT+65° +95° s +6s+2

(@

Solution

(a) The numerator and denominator polynomials have a missing term between those of highest and lowest
degree and one of the coefficient is negative in numerator polynomial. Hence, the function does not
represent a driving-point immittance function.

(b) The term of lowest degree in numerator and denominator polynomials differ in degree by two. Hence, the
function does not represent a driving-point immittance function.

(c) The function satisfies all the necessary conditions. Hence, it represents a driving-point immittance function.

" SENACRYWLE  Test whether the following represent transfer functions.

3s+2 2% +5s+1 1
b) ap =———"— (€ Zy=-

a) Gy =—————
@ G 58 +4s7 +1 s+7 s>+ 2s

Solution

(a) The polynomial D(s) has a missing term between that of highest and lowest degree. Hence, the function
does not represent a transfer function.

(b) The degree of N(s) is greater than D(s). Hence the function does not represent a transfer function.

(c) The function satisfies all the necessary conditions. Hence, it represents a transfer function.

"m Obtain the pole-zero plot of the following functions.

__S6+2) __ 86D
@ £ +1)(s+3) © (5+2)°(s+3)
_ s(s+2) _ (5+1)°(s+3)
© F6) s+ )+ 1- 1) @1 (s+2)(s+3+ j2)(s+3-j2)
2
(0 Fly-—3 "7

(5+2)(s* +9)
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Solution

(a) The function F(s) has zeros at s =0 and s =—2 and polesat s =— 1 and s = — 3.
The pole-zero plot is shown in Fig. 12.42.

Vany

-3 -2 -1 |0

Fany
Y
)

Fig. 12.42

(b) The function F(s) has zeros at s =0 and s = —1 and poles at s = —2, =2 and 5 = —3.
The pole-zero plot is shown in Fig. 12.43.

jo
A
X
S >0
-3 -2 -1 |0
Fig. 12.43

(c) The function F(s) has zeros at s =0 and s = -2 and poles at s =—1 —j1 and s = -1 +1.
The pole-zero plot is shown in Fig. 12.44.

jo
\
x:--1/1
& & >0
2 -1 |0
o]
Fig. 12.44

(d) The function F (s) has zeros at s =—1, —1 and s =—5 and poles at s =—2, s =—3 +;2 and s = —3 — 2. The
pole-zero plot is shown in Fig. 12.45.

jo
A
X m==--mmm - -j2
i Tt
D ! @ 0 > O
-5 -4 —35 -2 -1 Ny
X —------m- 1 —-j2

Fig. 12.45
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(e) The function F (s) has zeros at s =j2 and s = —j2 and poles at s = —2, s = j3 and s = —j3. The pole-zero

plot is shown in Fig. 12.46.

Fig. 12.46

" SENNCEVWIW  Find poles and zeros of the impedance of the network shown in Fig. 12.47 and plot

them on the s-plane.

1F
o—|
Z(s) —> 20 % H
O
Fig. 12.47

Solution The transformed network is shown in Fig. 12.48. 13

S o © ||

5%% 1 25 2% +s+4  2(sP+0.55+42)
Z(s)=—+ =—+ = = Z 5

s S, s s+4 s(s+4) s(s+4) (8) —
2
 2(s+0.25+ j1.4)(s+0.25— j1.4) o
s(s+4) Fig. 12.48
The function Z (s) has zeros at s =—0.25 +j1.4 and s =—0.25 — j1.4 and poles at s = 0 and s = —4 as shown
in Fig. 12.49.
jo
A
o+ 1.4
: : : | >0
-4 -3 -2 -1 -0.25] 0
Or-j1.4

Fig. 12.49



12.8 Restrictions on Pole and Zero Locations for Transfer Functions 12.25

" SEINICMYIWIR  Determine the poles and zeros of the impedance function Z (s) in the network

shown in Fig. 12.50.

NV
o=

_s+2  0.5(s+2)

Q
2
o NV
Z(s) — “—4F
O
Fig. 12.50
Solution The transformed network is shown in Fig. 12.51.
1
2
o AVAVAY,
1
Z -
(8) — T 4s
O
Fig. 12.51
1.r
Z(s):%+4s 6_1+ 1 4s5+38

L, 172 4546 2(4s+6) 2543  s+15

45 6

The function Z(s) has zero at s = —2 and pole at s = —1.5.

” SENICHYWEN  Determine Z(s) in the network shown in Fig. 12.52. Find poles and zeros of Z(s)

and plot them on s-plane.

2

1H
o 7000
z =1
& — T 20"
O
Fig. 12.52
Solution The transformed network is shown in Fig. 12.53.
S
© 7000
Z(s) —> — 20
T S
o

Fig. 12.53
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20
x4 80 20 s(s+5)+20 s> +55+20
Z(s)=s+ =5+ =g+ = -
20 45 +20 s+5 s+5 s+5
—+4
S
(54254 j3.7)(s+2.5— j3.71)
s+5

The function Z(s) has zeros at s =—2.5 +;3.71 and s = -2.5 —j3.71 and pole at s =-5.
The pole-zero diagram is shown in Fig. 12.54.

_____________ L j3.71

2 1 0

------------- L—j3.71

Fig. 12.54

1,
" SENNCRYWER  For the network shown in Fig. 12.55, plot poles and zeros of function ]—0.

i

lo
4Q
h(}) —_O05F
2H
Fig. 12.55
Solution The transformed network is shown in Fig. 12.56.
By current-division rule, lo
4
4+2
omi] 222 ®
4+25+—
s 2s

o|n

Iy _ s(4+2s)  s(s+2)  s(s+2)
I 45425 +2 s 4+2s+1 (s+D)(s+]) Fig. 12.56

The function has zeros at s = 0 and s = -2 and double poles at s =—1.
The pole-zero diagram is shown in Fig. 12.57.
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jo
A

X
s P
4 -3 -2 0
Fig. 12.57

" Example 12.30 Draw the pole-zero diagram of L for the network shown in Fig. 12.58.

1

l>

h <D —~ 250 uF

Fig. 12.58
Solution The transformed network is shown in Fig. 12.59.

lp

10H

200 Q

1 1
250x 1078

10s

200

Fig. 12.59
By current-division rule,
b
-6

I =1 1250><10 s

—————+10s+200

250x107"s
I _ 400 400

I 212054400 (s+10— /17.32)(s+10+ j17.32)

The function has no zero and poles at s =—10 +;17.32 and s =—-10 —17.32.

The pole-zero diagram is shown in Fig. 12.60.

jo
A
SO L f17.32
_10i 0
X mmmm e ] L -j17.32

Fig. 12.60

12.27
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Ve
" SEINICUYIIN  For the network shown in Fig. 12.61, draw pole-zero plot of 7

1

v, C_D L2V V) sl %W ZZ%F V,

Fig. 12.61

Solution The transformed network is shown in Fig. 12.62.

v, C) ave  {{)sh s —2 v,

O
Fig. 12.62
Applying KVL to the left loop,
V=1, +2V,=0
I=V,+2V,
Applying KCL at Node C,
V. V.
5H+—+—=0
[ 2
s
v,
51 +2VC)+—C+£VC =0
s 2
sy+10V.+ 22+ 3y —0
s 2
205+2+s°
Vc( Os+2+s J=—5V1
2s
Ve 10s _ 10s '
Vi $+20s+2  (s+0.)(s+19.9) '
The function has zero at s = 0 and poles at s =— 0.1 and s =—19.9.
The pole-zero diagram is shown in Fig. 12.63.
: : : S, > O
20 2 -1 01 |©

Fig. 12.63
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" SEINICHYIEY R  Find the driving point admittance function and draw pole-zero plot for the network
shown in Fig. 12.64.

=
\®]
» N

v, C) 0.1V, 10/, 0.5s § 1 V,

Fig. 12.64

Solution  Applying KVL to the left loop,

V-26L+0.1V,=0

AN ) ()
2

Applying KCL at Node 2,

v, V.
10, +——+-2=0
055 1

2
10L+=0V,+V,=0
N

2
1011+(—+1 V, =0
S

2+s

10[1+( V=0

S

2
(S+ V2:—10[1
N

I ...(i)

Substituting Eq. (ii) in Eq. (i),

I = — 0.5V, +0.0s[ 108 )11
2 \ s+2

Hence yooh_ 05 _05(s+2) 055+l
’ ; 12 055 s+0.55+2  1.5s5+2

s+2
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The function has zero at s = —2 and pole at s = —1.33. The pole-zero diagram is shown in Fig 12.65.

Fig. 12.65

V: V-
" DCI I HVIER  For the network shown in Fig. 12.66, determine [—2 Plot the pole-zero diagram of [—2

g g
1H =0
7000 <~—o0
+
lg<¢> §1Q ——1F _—1F 7A
o
Fig. 12.66
Solution The transformed network is shown in Fig. 12.67.
Va S Ib Vb VC 12 = O
Py > @ . ~< O
1,1 +
1 1
Iy C*) § 1 _‘, 5 _’,? 1 Vs
o
Fig. 12.67
Ve=Vy, =0
4
]b =%+Tc= SVz +V2 :(S+1)V2

S
Vo=sly+Vy =s(s+)Vy+V, =(s* +s+ 1)V,

vV, V.
] =_a+_a

1, = (2 +s+ D)V +5(s* + s+ D)V +(s+ D)V, =(5° + 257 +35+2) V5

N

v, 1
Hence, — == 3
I, 7425 +3s+2

The function has no zeros. It has poles at s =—1, s =—-0.5 +1.32 and s =-0.5 —1.32,
The pole-zero diagram is shown in Fig. 12.68.



v
" SEINI YW  For the transfer function H(s) = Vo

jo
A
N -j1.32
i -
1 -os 2
P —— L —1.32
Fig. 12.68
Vo __ 10
s°+3s+10

network shown in Fig. 12.69. Find L and C when R =5 €.

12.8 Restrictions on Pole and Zero Locations for Transfer Functions

12.31

, realise the function using the

O

Solution The transformed network is shown in Fig. 12.70.

O

Simplifying the network as shown in Fig. 12.71,

L
000 o)
+
—¢C § R Vo
)
Fig. 12.69
Ls
000 0
+
41 A
=& 3 "
)
Fig. 12.70
Ls
000 O
+
16 Jeo
)
Fig. 12.71
in R
Z(s) = Cls == —
Ry Cs+

Cs
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R
Vo=V, RCs+1
Ls+
RCs+1
1
W _ R _ LC
Vi RLCs*+Ls+R o, 1 1
RC LC
But Y = —10
Vi s7+3s+10
and R=5Q
Comparing Eq. (i1) with Eq. (1),
1
=3
RC
1
—=10
LC
Solving the above equations,
L=15H
C=LF
15

()

...(ii)

"m Obtain the impedance function Z(s) for which pole-zero diagram is shown in Fig. 12.72.

jo
A
Z(e0) = 1
D D > O
-3 -2 -1 0
Fig. 12.72

Solution The function Z(s) has poles at s =—1 and s =3 and zeros at s = 0 and s = 2.

s* (1+2J
s(s+2) _ s

Z(s)=H > =
(s+1)(s+3) S2(1+1)(1+3)
N N

For s = oo,
1
Z(0)=H——=H
() (H(AD)
When Z() =1,
H=1
Z(s)= s(s+2)

C(s+1)(s+3)
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" SEINI YT  Obtain the admittance function Y(s) for which the pole-zero diagram is shown in

Fig. 12.73.
jo
A
X7 J1 Y(eo) =1
D i D >0
2 -1 0
X oo —j1
Fig. 12.73
Solution The function Y(s) has poles at s =—1 + 1 and s =—1 —j1 and zeros at s =0 and s = 2.
+2 +2 +2 S2(1+2)
Y(s)=H s6*D) S(i ) S=H j(s ) s
(s+14D(s+1=4) (s+1> = (1) s> 42542 32(1+2+2)
S SZ
For s = oo,
Y(oo):HQ:H
1)
When Y(eo)=1,
H=1
s{s+2
Y(s)z—z( )
§T+2s+2

" SEIWICRYIEYE 4 nerwork and its pole-zero configuration are shown in Fig. 12.74. Determine the
values of R, L and C if Z (jO) = 1.

jo
A
° x---1 1 V111
R 5 2
1 i
z 41 ! .
(8) T Cs &— 0 ?
Ls -3 -1.5
:x NEEE]
O e 2
Fig. 12.74
(Ls+R) ! 1(S+RJ
. Cs Ls+R .
Solution Z(s) = G __C > Ll ()
(LS+R)+7 LCS +RCS+1 S2+*S+7

L LC
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V111 111
From the pole-zero diagram, zero is at s =—3 and poles are at s =—1.5+ and s=—-1.5- jT
s+3
Z{(s)=H
NIl V111
s+HL5+j— | s+15-j——
2 2
Z(s)=H s+3 > = sti
) 111 s*+35+30
(s+1.5)7 | VUL
2
When Z(jo)=1,
(3
30
H=10
z@y;%ﬂﬁiﬁ_ (i)
s°+3s+30

Comparing Eq. (i1) with Eq. (1),

=10

=30

h‘_
AT A=~

Solving the above equations,

1

10

r=1n
3

C

R=1Q

" SEINI WY 4 network is shown in Fig. 12.75. The poles and zeros of the driving-point function
Z(s) of this network are at the following places:

1
Poles at ——ijﬁ
2 2
Zero at —1
If Z (jO) = 1, determine the values of R, L and C.
O
R
z L1
(8) —> — Cs
Ls
O
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: 1( R)

] Ls+R)— st _
Solution Z(s)=( TR __ Lst+R _ C\U L (i)
2

Is+R4+ L LCs®+RCs+1 o R 1
Cs L LC

1 3 :
The poles are at 3 + j? and zero is at —1.

+1 +1 +1
Z(s)=H al -H a -H-2

1 3 1 3 2 2 s2+s+1
R e

When Z(j0)=1,

)
)

H=1
s+1

Z(S) = m ...(11)

Comparing Eq. (ii) with Eq. (1),
C=1

LC
Solving the above equations,
C=1F
L=1H
R=1Q

|| Example WAL W  The pole-zero diagram of the driving-point impedance function of the network of

Fig. 12.76 is shown below. At dc, the input impedance is resistive and equal to 2 W. Determine the values of
R, L and C.

jo
A
o x==1j4
1 A i
Z(s) - Cs o 5 > o
Ls -2 -1
o s
Fig. 12.76
Ls+p ) s+ 1)
s+R)— st
. Ls+R .
Solution Z(s) = Cls = 2S S = L : (1)
Is+ R+ LG +RCs+1 2 Ko 1
Cs L LC

From the pole-zero diagram, zero is at s =—2 and poles are at s =—1+ ;4 and s = -1 — j4.
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+2
Z(s)=H a

s+2

s+2

(s+1+ ) (s+1—j4)
=0,7(j0)=2
r=n>

17
H=17

+2
Z(s)=17—

2 +25+17

Comparing Eq. (ii) with Eq. (i),

=17

h|H
AT~ A=

Solving the above equations,

c=L
17

L=1H
R=2Q

(s+1)* = (j4)’

=H

2 +25+17

...(ii)

" Example WX The network shown in Fig. 12.77 has the driving-point admittance Y (s) of the form

O
1 Ls
Y (S) —> ::§
R
O
Fig. 12.77
Solution
| (Ls+R)Cs+1 LCs®+RCs+1 C(S2+IZS+LIC)
(a) Y(s)=Cs+ _(Ls+R)Cs+1_ LCs ST
Ls+R Ls+R Ls+R s+§
L
But Y(s) = H(s—s)(s—5;)

_ (s=s1)(s=s;)
Y(S)_H—(S—S3)

(@) Expresss,, s, s;interms of R, L and C.

(b) When s, =10 + j10% s, =10 — j10* and Y (jO) = 107! mho, find the values of R, L and C and

determine the value of s .

(s—s53)
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_RLRY 4
L \\2) Lc R RY 1
where S|, 8y = =4 | = -—
2 2L 2L) LC
S —_E
UL
(b) When s, =-10+;10*
s,=—10-;10*
a4 104 2 8 .
)Ts):lf(s+10 J101)(s+10+j10%) 5% +205+10 (D)
S— 383 S—83
Comparing Eq. (i1) with Eq. (1),
R
— =20
L
S3:—20
2 8
20
Y(S)=H(S +20s+10%)
(s+20)
At s =0,
. (10
Y(jO)=H =10
(j0) 20
H=0.02x10"°
2 8
20s+1
Y(s)=002x10¢ & F20s+107) (i)
(s+20)

Comparing Eq. (iii) with Eq. (i),
C=0.02x10""F =0.02 uF

I
J—
(e

0

| —
T

h|_‘
Sl o~ QO

I I

[\O)

(e}

I
>
@)

" SEINI YRS A network and pole-zero diagram for driving-point impedance Z(s) are shown in
Fig. 12.78. Calculate the values of the parameters R, L, G and C if Z(j0) = 1.

jo
A
© NEGRGREEEEEREEES - j3
R : T /)2
1 i + j1
Z G - — ! | >
(S) —> § —T Cs I A T 0 . O
Ls -3 -2 -1 T+ —J1
i + -2
o Xommmmmmmmm oo -+ —Jj3

Fig. 12.78
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Solution 1t is easier to calculate Y(s) and then invert it to obtain Z(s).

2
Y(s)=G+Cs+ I _(G+Cs)(Ls+R)+1 _ LCs” +(GL+RC) s+1+GR

+R Ls+R Ls+R
1 R
1 Ls+R c\’"L
Z(S):Y(S):LCs2+(GL+RC)s+1+GR: > (G, R 1+GR -0
STH =+ s+
C L) (LC)
From the pole-zero diagram, zero is at s =—2 and poles are at s =3 £ 3.
Zs)= H ('s+2) _ (s2+2) - s+2
(s+3—=3)(s+3+j3) (s+3)" —(j3) s +65+18
When Z@{o)=1,
I:Hi
18
H=9
2 ..
Z(s)= 29(S7+) ...(i1)
(s +65+18)
Comparing Eq. (ii) with Eq. (1),
1
—=9
C
R_,
L
g+£=6
C L
1
+GR:18
LC
Solving the above equation,
C=1F
9
L=2H
10
G=20
9
R=2Q
5

|| SEINICHYN Y 4 series R-L-C circuit has its driving-point admittance and pole-zero diagram is
shown in Fig. 12.79. Find the values of R, L and C.



12.9 Time-Domain Behaviour from the Pole-Zero Plot

jo
A
X7 j25
i Scale factor = 1
| P >
» i Yo o
Xl _jo5
Fig. 12.79
Solution The function Y (s) has poles at s =—1 + ;25 and s =—1 — 25 and zero at s = 0.
Y(s)=H _° = =H—_—°
(s+1+j25)(s+1—-j25)  (s+1)% —(;25) 52 +25+626
Scale factor H=1
s
Y(s)= ———
5% +25+626
For a series RLC circuit,
| LCs*+RCs+1 L(Sz +§S+LICJ
Z(s)= R+ Ls+—=—— T
S Cs S

Y(s) = 1 _ K

2(9) L(s2 +Rs+1)
L LC

Comparing Eq. (i) with Eq. (ii),

L=1H
L:626
LC

c=_L

626
R
Z-9
L
R=2Q

EEX]| TIME-DOMAIN BEHAVIOUR FROM THE POLE-ZERO PLOT

12.39

...(ii)

The time-domain behaviour of a system can be determined from the pole-zero plot. Consider a network

function

F(s)=H (s—z)s—23)...(s—2z,)
(s=p)(s—p2)..(s= pm)

The poles of this function determine the time-domain behaviour of f{¢). The function f{¢) can be determined
from the knowledge of the poles, the zeros and the scale factor H. Figure 12.80 shows some pole locations

and the corresponding time-domain response.
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(i) When pole is at origin, i.e., at s = 0, the function f{¢) represents steady-state response of the
circuit i.e., dc value. (Fig. 12.80)

j@ f(1)
A A

o

Fig. 12.80 Pole at origin
(i)) When pole lies in the left half of the s-plane, the response decreases exponentially. (Fig. 12.81)

jo £(t)
A

> O

o]

Fig. 12.81 Pole in left half of the s-plane

(ii1)) When pole lies in the right half of the s-plane, the response increases exponentially. A pole in the
right-half plane gives rise to unbounded response and unstable system. (Fig. 12.82)

jo f(1)

0]

Fig. 12.82 Pole in right half of the s-plane

(iv) For s =0 +jm, the response becomes f (f) = Ae*/®' = A(cos @t * j sin @ 1).The exponential
response e*/“! may be interpreted as a rotating phasor of unit length. A positive sign of
exponential ¢/“' indicates counterclockwise rotation, while a negative sign of exponential
e7! indicates clockwise rotation. The variation of exponential function e/ with time is thus
sinusoidal and hence constitutes the case of sinusoidal steady state. (Fig. 12.83)

f(1)
A

4
o o\

Y

Fig.12.83 Poles on jw-axis



12.9 Time-Domain Behaviour from the Pole-Zero Plot

12.41

(v) Fors= o0 +jm, the response becomes f'(f) = Ae*' = Aelon!) = 4e%n' &®'. The response e is
an exponentially increasing or decreasing function. The response €% is a sinusoidal function.
Hence, the response of the product of these responses will be over damped sinusoids or under

damped sinusoids (Fig. 12.84).

jo
X T
5 5
X
jo
T X
5 >
X

(b)

Fig. 12.84 (a) Complex conjugate poles in left half of the S-plane
(b) Complex conjugate poles in right half of the S-plane

(vi) The real part s of the pole is the displacement of the pole from the imaginary axis. Since o is
also the damping factor, a greater value of o (i.e., a greater displacement of the pole from the
imaginary axis) means that response decays more rapidly with time. The poles with greater
displacement from the real axis correspond to higher frequency of oscillation (Fig. 12.85).

£(t)

4

\

~~

(a)

Fig. 12.85 Nature of response with different positions of poles
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Fig. 12.85 (Continued)

12.9.1 Stability of the Network

Stability of the network is directly related to the location of poles in the s-plane.

(i) When all the poles lie in the left half of the s-plane, the network is said to be stable.
(i1)) When the poles lie in the right half of the s-plane, the network is said to be unstable.
(ii1)) When the poles lie on the jw axis, the network is said to be marginally stable.
(iv) When there are multiple poles on the jw axis, the network is said to be unstable.
(v) When the poles move away from jw axis towards the left half of the s-plane, the relative stability of
the network improves.

12.10 " GRAPHICAL METHOD FOR DETERMINATION OF RESIDUE

Consider a network function,

(s—z)(s—23) (S —2a)

F(s)=H
(s=p)(s—p2) (5= pm)

By partial fraction expansion,
K K K
— 1 + 2 bt m
(s=p) (s=p2) (5= Pm)

F(s)
The residue K; is given by

(pi —z2pi —z2)(pi — zn)
(pi =X pi —p2)-(pi — Pm)

K, = (s—p,;)F(s)|S_)pi= H
Each term (p, - z,) represents a phasor drawn from zero z, to pole p..
Each term (p, - p,), i # k, represents a phasor drawn from other poles to the pole p..

K =5 Product of phasors (polar form) from each zero to p;
;=

Product of phasors (polar form) from other poles to p;
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The residues can be obtained by graphical method in the following way:

(1) Draw the pole-zero diagram for the given network function.

(2) Measure the distance from each of the other poles to a given pole.
(3) Measure the distance from each of the other zeros to a given pole.
(4) Measure the angle from each of the other poles to a given pole.
(5) Measure the angle from each of the other zeros to a given pole.
(6) Substitute these values in the required residue equation.

The graphical method can be used if poles are simple and complex. But it cannot be used when there are
multiple poles.

2
" SEINICWYNER  The current I(s) in a network is given by I(s) = 2 Plot the pole-zero

pattern in the s-plane and hence obtain i(t). (s+DE+2)

Solution Poles are at s =—1 and s = -2 and zero is at s = 0. The pole-zero plot is shown in Fig. 12.86.
By partial-fraction expansion,

) K K
I(s)= L=
s+1 s+2
jo
A
4 > O
2 _1 0
Fig. 12.86

The coefficients K, and K, often referred as residues, can be evaluated from he pole-zero diagram. From
Fig. 12.87,

_H Phasor from zero at origin to pole at 4 2(14180O

b U 1z00

) =2 /180°=-2
Phasor from pole at B to pole at 4

jo
A

B_, A

—_ 1 -«

Fany
J
1
Q

-2 _1 0

Fig. 12.87
From Fig. 12.88,

K, = H Phasor from zero at origin to pole at B _ 2[ 2/ 800]

Phasor from pole at 4 to pole at B 1 £180°
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jo
A
B A
& > o
< |9
Fig. 12.88
) 2 4
I(s)=———+
s+1 s+2

Taking inverse Laplace transform,
i(t)=-2e"+4e

" Example ANV The voltage V(s) of a network is given by

3s
S)= 2
(s+2)s"+25+2)

Plot its pole-zero diagram and hence obtain v (1).

3s 3s

Solution Vis)= 3 = . .
(s+2) (s +25+2) (s+2)(s+1+ jl)(s+1- /1)

Poles are at s =—2 and s =—1 £ 1 and zero is at s = 0 as shown in Fig. 12.89.

jo
A
B ,
x T
A E VA
i NP >0
2 1 0
X oot -
C
Fig. 12.89
By partial-fraction expansion,
K K K,
V(s)= —+ 2 2

+
s+2 s+1-j1 s+1+l1

The coefficients K|, K, and K; can be evaluated from the pole-zero diagram.
From Fig. 12.90,

3(04) 2/180°
=220 _3 = 3./180° = -3
B ([CA) | (2£-135°) (V221359
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A

S

A < ya 180°
' h > o
| JO g
-2 —1.
1 135°
V2 O\ _
X -3--1 —j1

Fig. 12.90

J—

=)
(AB)(CB) | (\J2£45°) (2.£90°)
. 3
K==
)
jo
A
B
______ L1
2, vz |
A 45°T¥ 135°
\3\ > 0
-2 = 0
90°
X d-mo— —f1
C
Fig. 12.91
3 3
Vs)= - 2y 2

- +
(s+2) (s+1-=j1) (s+1+ 1)
Taking inverse Laplace transform,

-
1

o 3T (e L _ 3 [t +e ! , _
v(t)=—3e 2z+5L€( 1+.Il)l‘+e( 1 /1)tJ=_3e 2t+2XEe t[ - 3¢ 2t+3e ! cost

" SENACRYRCW  Find the function v(t) using the pole-zero plot of following function:

Vis) = (s+2)(s+6)
(s+1(s+5)

Solution If the degree of the numerator is greater or equal to the degree of the denominator, we have to
divide the numerator by the denominator such that the remainder can be expanded into partial fractions.
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2
12 2 2 .
V(S)ZTLZI_F . s+ 7 1+ (S+35)
s°+6s+5 §T+6s+5 (s+1)(s+5)
By partial fraction expansion,
K K
Vis)=1+——+—2
s+1 s+5

K, and K, can be evaluated from the pole-zero diagram shown in Fig. 12.92 and Fig. 12.93.

s ja)
jfi) A
S > O S > O
- 0 - 0
-5 -35 -1 -5 -35 -1
Fig. 12.92 Fig. 12.93
From Fig. 12.92
K =2 2520 _ g
4.,0° 4
From Fig. 12.93
K, =2 1.5/180 _ 3
4./180° 4
s 3
Vis)=1+ 4 . 4
s+1 s+5

Taking inverse Laplace transform,

v(t) = 5(t)+%e_’ +%e_5t

|| SENNCYNR  The pole-zero plot of the driving-point impedance of a network is shown in
Fig. 12.94. Find the time-domain response.

jo
A
x-=—-= == - 1 Scale factor =5
5 o d
1 0
X o] - —1
Fig. 12.94

Solution The function Z(s) has poles at s =—1 + 1 and s = —1 —1 and zero at s = 0.
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Z(s)=H a
(s+1+ jD)(s+1-j1)
Scale factor H=5 jo
\
Z(s) 5s

T (st 1t (s +1— D)

4
AXCTTT wi
By partial fraction expansion, |
* ; D >0

K K i N
Z(s) = L. g 0
s+1+j1 s+1-41 !
: e
The coefficients K; and K; can be evaluated from the pole-zero B
diagram. From Fig. 12.95, Fig. 12.95
K, = > (EA) 3 (\/54135 ) =3.54.£45°
(BA) 2./90°
K| =3.54/—45°
Z(s) = 3.54.£45 N 3.54£-45
s+1+ 1 s+1—jl1
Taking inverse Laplace transform,
2(f) = 3.54 £ 45° 1TV 4 3.54 /4514
4
" SEINNI YRV  Evaluate amplitude and phase of the network function F(s) = 7—S from the
. sT+2s+2
pole-zero plot at s = j2.
4s 4s
Solution F(s)= = : ,
242542 (s+1+ jD)(s+1- /1)
The pole-zero plot is shown in Fig. 12.96.
Ats =2,
jo
A
7 )2
X'
& >0
—1 : II 0
Iy N —j‘]
Fig.12.96
Product of phasor magnitudes from all zero to j2 2

F(j2)|= = =0.447
[F2)] Product of phasor magnitudes from all poles to ;2 (\/E) (\/E)
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a2 (3 _
¢(w) = tan "NZ]-tan™'| = |-tan"'| - |=90°—71.56
0 1 1
" SEINI YRS Using the pole-zero plot, find magnitude and phase of the function
+1)(s+3
Fsy=SXDETS) o
s{s+2)
. +1)(s+3
Solution F(s)= (s+1)(s+3)
s{s+2)
The pole-zero plot is shown in Fig. 12.97
Ats=j4,
jo
J
A J4
S -
-3 -2 -1
Fig. 12.97
4_ ()T _

T (20) (4)

Product of phasor magnitudes from all zeros to j4
product of phasor magnitudes from all poles to j4

)—tan (—) 75.96°+53.13°-90° - 63.43° = —24.34°

|F(j4)l=

i

O(w) = tan (T)+tan (g)—tank

" SEINI YRR Plot amplitude and phase response for
F(s)=
)= s+10

. Jjo
F(jw)=
(j@) jo+10

[0)]
|F(jo)= ——
Jw? +100

Solution




(/)]

|Fijo)|

0
10
100
1000

0.707
0.995
1

The amplitude response is shown in Fig. 12.98.

—tan”~! o =90°—tan"! o
10 10

—tan~' | &
O(w) = tan ( 0

P(@)

0 90°
10 45°
100 5.7°
1000 0°

The phase response is shown in Fig. 12.99

" Example 12.50 Sketch amplitude and phase response for F(s) =

Solution

) iw+10
F(jo)=~

jo-10

IF(fw)l=

Vo +100
Vo +100

For all @, magnitude is unity.
The amplitude response is shown in Fig. 12.100.

12.10 Graphical Method for Determination of Residue

12.49

90°

45° 1

can (@) [~ 2 2 2 (2
¢(w) = tan (10) tan k 10) 2tan (10)

The phase response is shown in Fig. 12.101.

P(w)

10
100
1000

0°
90°

168.6°

178.9°

180° ------=--=--ooo=m

————t—— 0
10 100 1000

Fig. 12.98

¢ ()
A

I } w
10 100 1000
Fig. 12.99

s+10
s—10

Fje)
A

Fig. 12.100

¢ (@)

A

90° +----

—t— -0
0 10 100 1000

Fig. 12.101
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Exercises

. . o 2
12.1 Determine the driving-point impedance ]—1,
1

. v
transfer impedance [—2 and voltage transfer
1

V-
ratio —= for the network shown in Fig. 12.102.
1

I 50Q 20 =0
oA ANA <o
Vv, g 2H ——F v,
o o

Fig.12.102

VW _1+7s+5 7V, 25
I s2+s+1 ’11 s2+s+1,

V_ L]
Vi 1% +7s+5
12.2 For the network shown in Fig. 12.103,
.V V.
determine —= and —=.
| I
2H
| — T =0
+ 5 *
[

7 ::% F — % F V,
o o
Fig.12.103

S N

no 2S2+1’Z_s(3sz+2)

12.3 Find the open-circuit transfer impedance Z,,
and open-circuit voltage ratio G,, for the
ladder network shown in Fig. 12.104.

I, 2H 1H l,=0
1 o O T <o 2
+ +
Vi __2F “—2F Vs
1o 02
Fig. 12.104

1 1
7y = ,Gyy=—————
[ 2 25% +3s 2 45 +75° +1:|

12.4 For the two-port network shown in Fig.
12.105, determine Z, |, Z,, and voltage transfer
ratio G,,(s).

I, 2H 20
2—>—f6W NN < JOF
v, ——1F %m v,
o )

Fig. 12.105
253 +45% +3s5+2 K
Zy = 5 zy=——7,
s +2s+1 sT+2s+1

K
Gy =——5—— :|
28" +4s5°+3s5+2

12.5 Draw the pole-zero diagram of the following
network functions:

2
(i) F(S)ZZS—Jr4
s°+6s5s+4
.. S5s—12
1) F(s)=————
W) Fs) s*+4s+13
s+1
(i) F(s)=————
(s* +2s+2)°
2
. s{s”+5)
) F(s)=————
) FGs) st 257 +1



2
ST+s+2
V) F(§)=—7F7—F
st +55° + 652
2
T =5
i) F(s8)=—5—5——
s°+25% —5-2
.. s2+35+2
(vii) F(s)=—F—7
s°+3s

(s> +4)(s+1)

5 F(s) =
(viil) F(s) (s> +1)(s* +25+5)

12.6 For the network shown in Fig. 12.106, draw
the pole-zero plot of the impedance function

Z(5).
2H
o—000
Z(s) — —AF § 10
O
Fig. 12.106
Z(s) = [(s+2.5—]1.94)(s+2.5+jl.94)]
s+5

12.7 For the network shown in Fig. 12.107, draw
the pole-zero plot of driving-point impedance

function Z(s).
5Q 10Q
o NN NN
Z(s) —> “—10F ——5F
O
Fig.12.107

5(s+0.01)(s+0.04)
s(s+0.03)

[Z(S) =

12.8 Find the driving-point impedance of the
network shown in Fig. 12.108. Also, find
poles and zeros.

12.51

Exercises

1F 2F
[
I

Fig. 12.108

|:Z(s)

12.9 Find network functions Eandﬁ for the

_ 1.5s(s2+0.33)
(s* +1.707)(s* +0.293)

Vi I
network shown in Fig. 12.109 and plot poles
and zeros of m
Mi(s)
I 1Q 2H
N 7000
+
v, ——1F ——1F V2§1Q
o
Fig. 12.109

vy 1 Vi _2s’+25% +2s+1)
Vi A +25%+2s+1) I 257 +25° +2s+1

12.10 For the network shown in Fig. 12.110,

" V-
determine — and —=. Plot the poles and

I I
zeros of & .
I
, 1H 2H
——r A SIIR —F
v, —1F ——LF
5 L
Fig. 12.110

’ I - 25 +3s

Mn_2s'+58+27, 2
L 257 +3s
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12.11 For the network shown in Fig. 12.111,

. N V-
determine — and —= . Plot the pole and zeros

1 "
for &
14

1F 2F
o ,’1 | [ |
+ ! I —T’+
Vi §1H 1H W
| I

Fig.12.111
ﬁ B st 357 +1
I 25° +5

12.12 For the network shown in Fig. 12.112, plot the
poles and zeros of transfer impedance function.

I, 1H 1H
o——T00 I T+

7 §1Q §1Q V,
a i

Fig.12.112
o1
I s+2

12.113,

12.13 For the network shown in Fig.

determine Eand&. Plot the poles and

I 4
zeros of transfer impedance function.
,, 2H 4 H
o—>—"000" 7000 +
v, _—2F ——1F y,
5 .
Fig.12.113
Vi _16s*+105°+1 1, 1
I 83 +3s I 857 +3s

&_;}
i 16s% +10s% +1

12.14 Obtain the impedance function for which the
pole-zero diagram is shown in Fig. 12.114.

jo
A
=1
Q 2(jo)=1_
2 1 |0
b
Fig. 12.114
2(s+1)
2= 26
sT+2s+2

12.15 For the network shown in Fig. 12.115, poles
and zeros of driving point function Z(s)
are,

Poles: (-1 + j4); zero: —2

If Z (jO) = 1, find the values of R, L and C.

o
] R
Z(s)— —
Ls
O

Fig. 12.115

[IQ, 0.5 H,i F:|
17

12.16 For the two-port network shown in Fig.

12116, find R, R, and €. 2 = —2

Vi s?+3s+2

1H R,
o 7000 NV K+
+ !
v, _—_C R, A
| [
Fig.12.116

3 Q,L Q,05F
5 15



12.17 For the given network function, draw the
pole-zero diagram and hence obtain the time
domain voltage.

Vis)= -+
(s+2)(s+7)

[V(f) = 3e7? +2¢771]

Objeciive-Type Questions

Objective-Type Questions 12.53

12.18 A transfer function is given by
10 . .

Y(s)= > Find time-

(s+5+ j1S)(s+5-j15)
domain response using graphical method.

[5.26 £18.4° /19 115,262 ~18.4° 571150 ]

12.1 Of'the four networks N, N,, N, and N, of Fig.
12.117, the networks having identical driving-
point functions are

(a) N;and N, (b) N,and N,
(c) N, and N, (d)N,and N,
2H 10
000 — VWV
20 1F
o AN || o
1F
[
[
N1
2H 1Q
7000 VWV
o— ——o0
2Q 1F
Y ||
N,
1Q
—n
1H
1F
[
[
NS
1Q 2H
NVAN—T00
o— —o
1F
[
[
Ny
Fig. 12.117

12.2 The driving-point impedance Z(s) of a
network has the pole-zero locations as shown
in Fig. 12.118. If Z(0) = 3, then Z(s) is

jo
A
X ===+ j1
D i >0
3 -1 |°
PO
Fig. 12.118
3(s+3) 2(s+3)
I ®) ———
s°+25+3 ST+ 2542
3(s—-3 2(s-3
(c) 2(—) (d) 2(—)
s°=25-2 s —25-3

12.3 For the circuit shown in Fig. 12.119, the
initial conditions are zero. Its transfer function

H(s)= 208 i

A6
10 kQ 10 mH
O—ANA—TO o
+ +
v (1) “—100puF
o o
Fig. 12.119
1 10°
(a) b

s +10%s+10° s> +10%s+10°
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10° @ 10°
s2+10°s+10° s2+10%s+10°

(c)

12.4 In Fig. 12.120, assume that all the capacitors
are initially uncharged. If v(¢) = 10 u(#), then
v,(?) is given by

1kQ
— A
Oo— O
+ I I +
4 uF
v; (t) " aka 1uF v ()
o o
Fig. 12.120

(a) 8 6—0.0041
(c) 8 u(1)
12.5 A system is represented by the transfer

(b) 8 (1_6—0.0()4 t)
(d) 8

The dc gain of this

function ——.
system is (s+D(s+2)

(a) 1
(©)5

(b)2
() 10

12.6 Which one of the following is the ratio Yau

45
of the network shown in Fig. 12.121.

1Q
10 AVAVAY, 02
1Q 1Q
30 AVAVAY, o4
1Q
Fig. 12.121
1 2
a) — b) —
(@) 3 (b) 3

(©) (d)

12.7 A network has response with time as shown
in Fig. 12.122. Which one of the following
diagrams represents the location of the poles
of this network?

Fig. 12.122
jo jo
A A
X X X
(a) >0 (b) > O
% 0 0
Y ¥
X
(©) 0 > O (d) 0 . o
Fig.12.123
12.8 The transfer function of a low-pass RC
network is
1
a) (RCs) (1 +RCs b
(@) (RCs) ( ) (b) 1+ RCs
RCs K
c d
© 1+ RCs @ 1+ RCs

12.9 The driving-point admittance function of the
network shown in Fig. 12.124 has a

Ff§ 31- —C

Fig. 12.124

(a) pole at s =0 and zero at s = oo
(b) pole at s =0 and pole at s = e
(c) pole at s = oo and zero at s =0
(d) pole at s = and zero at s = oo



Answers to Objective-Type Questions 12.55

2
12.10 The transfer function Y,(s)= L2(s) for the (a) _5 (b) S
i(s) s*+s+1 s+1
network shown in Fig. 12.125 is
1 s+1
() — (d) =
10 Ip(s) s+1 s*+1
© Vv > 12.11 As the poles of a network shift away from
the x axis, the response
Vi(s) %1 H —1F (a) remains constant
(b) becomes less oscillating
o (c) becomes more oscillating
Fig. 12.125 (d) none of these
Answers to Objective-Type Questions
1. (¢) 2. (b) 3. (d) 4. (c) 5. (¢) 6. (a)

7. (d) 8. (b) 9. (a) 10. (a) 1. (c)
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