
12
Network Functions

 12.1   INTRODUCTION

A network function gives the relation between currents or voltages at different parts of the network. It is 

broadly classifi ed as  driving point and  transfer function. It is associated with terminals and ports.

Any network may be represented schematically by a rectangular box. Terminals are needed to connect any 

network to any other network or for taking some measurements. Two such associated terminals are called 

 terminal pair or  port. If there is only one pair of terminals in the network, it is called a one-port network.

If there are two pairs of terminals, it is called a  two-port network. The port to which energy source is connected 

is called the  input port. The port to which load is connected is known as the  output port. One such network 

having only one pair of terminals (1 – 1′ ) is shown in Fig. 12.1 (a) and is called  one-port network. Figure 

12.1 (b) shows a two-port network with two pairs of terminals. The terminals 1 – 1′ together constitute a port. 

Similarly, the terminals 2 – 2′ constitute another port.
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Fig. 12.1 (a) One-port network (b) Two-port network

A voltage and current are assigned to each of the two ports. V
1
 and I

1
 are assigned to the input port, 

whereas V
2
 and I

2
 are assigned to the output port. It is also assumed that currents I

1
 and I

2
 are entering into 

the network at the upper terminals 1 and 2 respectively.

 12.2    DRIVING-POINT FUNCTIONS

If excitation and response are measured at the same ports, the network function is known as the driving-point 

function. For a one-port network, only one voltage and current are specifi ed and hence only one network 

function (and its reciprocal) can be defi ned.
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1. Driving-point Impedance Function It is defi ned as the ratio of the voltage transform at one port 

to the current transform at the same port. It is denoted by Z (s).
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2. Driving-point Admittance Function It is defi ned as the ratio of the current transform at one port 

to the voltage transform at the same port. It is denoted by Y (s).
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  For a two-port network, the driving-point impedance function and driving-point admittance function at 

port 1 are
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Similarly, at port 2,
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12.3    TRANSFER FUNCTIONS

The transfer function is used to describe networks which have at least two ports. It relates a voltage or current 

at one port to the voltage or current at another port. These functions are also defi ned as the ratio of a response 

transform to an excitation transform. Thus, there are four possible forms of transfer functions.

1. Voltage Transfer Function It is defi ned as the ratio of the voltage transform at one port to the 

voltage transform at another port. It is denoted by G (s).
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2. Current Transfer Function It is defi ned as the ratio of the current transform at one port to the current 

transform at another port. It is denoted by a (s).
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3. Transfer Impedance Function It is defi ned as the ratio of the voltage transform at one port to the 

current transform at another port. It is denoted by Z (s).
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4. Transfer Admittance Function It is defi ned as the ratio of the current transform at one port to the 

voltage transform at another port. It denoted by Y (s).
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  Example 12. 1  Determine the driving-point impedance function of a one-port network shown in Fig. 12.2.
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Solution The transformed network is shown in Fig. 12.3.
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 Example 12.2  Determine the driving-point impedance of the network shown in Fig. 12.4.
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 Example 12.3  Determine the driving-point impedance of the network shown in Fig. 12.5.
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 Example 12.4  Find the driving-point admittance function of the network shown in Fig. 12.6.
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 Example 12.5  Find the transfer impedance function Z
12

(s) for the network shown in Fig. 12.7.
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 Example 12.6  Find voltage transfer function of the two-port network shown in Fig. 12.8.
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Solution By voltage division rule,
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12.4   ANALYSIS OF  LADDER NETWORKS

The network functions of a ladder network can be 

obtained by a simple method. This method depends 

upon the relationships that exist between the branch 

currents and node voltages of the ladder network. 

Consider the network shown in Fig. 12.9 where all the 

impedances are connected in series branches and all 

the admittances are connected in parallel branches.

Analysis is done by writing the set of equations. 

In writing these equations, we begin at the port 2 of 

the ladder and work towards the port 1.

V
b
 = V

2

I
b
 = Y

4
 V

2

V
a
 = Z

3
 I

b
 + V

2
 = (Z

3
Y

4 
+ 1) V

2

I
1
 = Y

2
 V

a
 + I

b
 = [Y

2
 (Z

3
 Y

4
 + 1) + Y

4
] V

2

V
1
 = Z

1
 I

1
 + V

a
 = [Z

1
 {Y

2
 (Z

3
 Y

4
 + 1) + Y

4
} + (Z

3
 Y

4
 + 1)] V

2
 

I1
Z1 Z3

Y2

Va Ib Vb

Y4V1

I2 = 0

+

−

V2

+

−

Fig. 12.9 Ladder network



12.6 Network Analysis and Synthesis

Thus, each succeeding equation takes into account one new impedance or admittance. Except the fi rst two 

equations, each subsequent equation is obtained by multiplying the equation just preceding it by imittance 

(either impedance or admittance) that is next down the line and then adding to this product the equation twice 

preceding it. After writing these equations, we can obtain any network function.

 Example 12.7  For the network shown in Fig. 12.10, determine transfer function 
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Solution The transformed network is shown in Fig. 12.11.
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 Example 12.8  For the network shown in Fig. 12.12, determine the voltage transfer function 
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 Example 12.9  Find the network functions
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Solution The transformed network is shown in Fig. 12.14.
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 Example 12.10  Find the network functions
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Solution The transformed network is shown in Fig. 12.16.
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 Example 12.11  For the ladder network of Fig. 12.17, fi nd the driving point-impedance at the 1 – 1Ä

terminal with 2 – 2Ä open.
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Solution The transformed network is shown in Fig. 12.18.
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 Example 12.12  Determine the voltage transfer function
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 for the network shown in Fig. 12.19.

V

I1

+

V

+

−

1 Ω

1 Ω

2

1 F 1 F

I 0

Fig. 12.19

Solution The transformed network is shown in Fig. 12.20.
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 Example 12.13  For the network shown in Fig. 12.21, determine the transfer function 
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Solution The transformed network is shown in Fig. 12.22.
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Solution The transformed network is shown in Fig. 12.24.
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Solution The transformed network is shown in Fig. 12.26.
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s
Va1

2 2s

3 2s

s

9 8s
= +

s 2+s8
V

V s

s

s
I

2

2 2s

3
3

3

3

1

s⎛ ⎞

+

⎛ ⎞

=
+

×
3

1

5 2

2 2

2

2 2
+ =

+
+⎛

+
+⎛

s
V

+ + + +⎡

⎣

V

+ s s+ s s
V

27 15 2

s + 2

36 25 8

2

+ +
+

⎛

( )36 25 8+ +
2+

+
V

+ s ⎞
V

Hence, 
V

V s

s 2

36 25 8
=

+s

+s +
I

I

V

I

V

I

2

1

1

1

2 2s

s 5 2s

2 2s

s 5 2s

36 2

=
+s

+

=
+s 36 25 8

2

s+s +
+ss 2s +s

 Example 12.16  For the resistive two-port network of Fig. 12.27, fi nd 
V

V
,
V

I
,
I

V
and

I

I1

2 2

1

V

I1 I

+

V

+

1 Ω

2 Ω 2 Ω 2 Ω

1 Ω 1 Ω 1 Ω

Fig. 12.27

Solution The network is redrawn as shown in Fig. 12.28.

V

I1 IV

Ia

V

I+

V

+

1

2 2V

1 1 1

Fig. 12.28
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I
V

V

V I V

I
V V

V V

V V V V

bVV

b
b bV VV V

bVV

a bV IV bVV

2
2VV

2VV

2 2VV

2VV

2 2V VV

1

3 3I2

1 3

4

3
4

2 8I Vb VV 3

= − = −

= +b = VVV

IbI +V2VV ==

= + +

=

11

1
11 4 1

2 3+ 0 1+ 1 41

2

2 2+ 4 2

21 + 2 2

1
1

V2

I
V

I V= 11 2 V1= 52 2

V = 21 = 2 3= 0 23= 0 V V4= 12 24= 1

I1

V1

a
aVV

b

a a+

11
41 15 62 25 2+ +1515I V41 2= V V562 2=2a

Hence, 
V

V

2VV

1VV

1

41
=

V

I

I

V

I

I

2VV

1

2

1VV

2

1

1

56

1

41

1

56

= Ω
1

= −

= −

 

 Example 12.17  Find the network function 
V

V

2VV

1VV
 for the network shown in Fig. 12.29.

V2

2V1

+

−

V1

+

−

1 Ω

1 Ω1 ΩIa

2Ia

I2 = 0

+ −

Fig. 12.29

Solution The network is redrawn as shown in Fig. 12.30.

V2

2V1

+

−

V1

+

−

1

11Ia

2Ia

3Ia

3Ia

I2 = 0

+ −

Fig. 12.30
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From Fig. 12.30,

V
2
 = 1 (3 I

a
) = 3 I

a

Applying KVL to the outermost loop,

V
1
 − 1 (I

a
) − 1 (3 I

a
) − 2 V

1
 − 1 (3 I

a
) = 0

    V
1
 = −7 I

a

Hence,     
V

V

2VV

1VV

3

7
= −

 Example 12.18  Find the network function 
I

I

2

1

 for the network shown in Fig. 12.31.

I1

I2

I1
V2

+

−

2Ia

Ia

− +

1 Ω 1 Ω

2 Ω

1 Ω2

Fig. 12.31

Solution The network is redrawn as shown in Fig. 12.32.

I1

I2
I2 +

I1

V2

+

−

2 Ia

Ia
d

− +

1

2

1

2

I1
2

Ia + I2 +
I1
2

I

a

b c e

f

1

Fig. 12.32

From Fig. 12.32,

I I I I
I

I I I

a

a

+I +I

= I +

1 2Ia+ + I
1

1 2I Ia +

2

3

2
 ...(i)

Applying KVL to the loop abcda,

− −
− −

1 1 2 0=
3 0=
3 0=

I I1−

I + 3

a a2

a

a

I

 ...(ii)
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Substituting Eq. (i) in Eq. (ii),

3

2
3 0

3

2
4 0

1

1 2

I I1 I 32

I I1

a a322

a

+I 333

+2I  ...(iii)

Applying KVL to the loop dcefd,

1 1 2
2

0

3 0

3

2 22
1

2 1

2 1

I1 I
I1

I 3

I I3 I1

a

a

a

2I1 +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

3

+2I3  ...(iv)

Substituting Eq. (iv) in Eq. (iii),

  

3

2
4 0

3

2
12 4 0

11

2
13 0

13
11

2

1 2

1 2 2 1

1 213

2

I I1

I I1 I 42

I I131

I

+2I =

+2I 444

=2I1313

= −

( )3 2 1I I2 1I1

II1  

Hence, 
I

I

2

1

11

26
= −

12.5   ANALYSIS OF  NON-LADDER NETWORKS

The above method is applicable for ladder networks. There are other network confi gurations to which the 

technique described is not applicable. Figure 12.33 shows one such network.

V2

+

−

V1

I1 I2
Z1

Z4

Z3

Z2

+

−

Fig. 12.33 Non-ladder network

For such a type of network, it is necessary to express the network functions as a quotient of determinants, 

formulated on KVL and KCL basis.
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 Example 12.19  For the resistive bridged T network shown in Fig. 12.34, fi nd 
V

V
,
V

I
,
I

V
and

I

I
.

2VV

1VV

2VV

1

2

1VV

2

1

V2

I2
I1

+

−

V1

I1 I2I3

+

−

2 Ω

1 Ω

0.5 Ω 1 Ω

1 Ω

Fig. 12.34

Solution Applying KVL to Mesh 1,

V
1
 = 1.5 I

1
 + 0.5 I

2
 − I

3 
...(i)

Applying KVL to Mesh 2,

 0 = 0.5 I
1
 + 2.5 I

2
 + I

3
 ...(ii)

Applying KVL to Mesh 3,

 0 = −I
1
 + I

2
 + 4 I

3
 ...(iii)

Writing these equations in matrix form,

I

I

1 1V IV I

2

3

0

0

1 0 1

0 5 2 5 1

1 1 4

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎥
⎦⎦

⎥⎥ =
−

⎡

⎣

⎢
⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥. .5 2  ...(iv)

I

V

V
V

I

1
1

1VV

1VV
1VV

2

0 5 1

0 2 5 1

0 1 4

1 5 0 5 1

0 5 2 5 1

1 1 4

9
= =

−

−

−

= =

=

Δ
Δ

Δ

.

. .5 0

. .5 2

( )10 1−

22

1

1
1

1 5 1

0 5 0 1

1 0 4

1 5 0 5 1

0 5 2 5 1

1 1 4

9

1

3Δ
=

−

−
−

−

= 1−
= −

. .5 0

. .5 2

( )2 1+2

V1

V1V1
V1

 ...(iv)

...(v)

From Fig. 12.34, V
2
 = −1 (I

2
) = −I

2

From Eq. (v), V
1
 = −3 I

2

From Eqs. (iv) and (v),    I V I

I I

2 1VV 1

1 2I I

1

3

1

3

3

= −

Hence, 
I

V

2

1VV

1

3
= − �
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I

I

V

V

V

V

I

I

V

I

I

I

2

1

1VV

1VV

2VV

1VV

2

2

2VV

1

2

2

1

3 1

3

3

1

3

3

1

3

=
−

= −

=
−

−
=

=
−

−
= Ω

1

 Example 12.20  For the network of Fig. 12.35, fi nd Z
11

, Z
12

 and G
12

.

V2

+

−

V1

a

d c

bI1

+

−

Za

Zb

Zb

Za

Fig. 12.35

Solution The network can be redrawn as shown in Fig. 12.36. Since the network consists of two identical 

impedances connected in parallel, the current in I
1
 divides equally in each branch.

V
I

1VV
1

2
( )Z Za bZ+Za

Z
V

I

Z Z

V Z
I

Z
I I

Z
V

I

Z

a bZ Z

b aZ

b

11
1VV

1

2VV
1 1

Z
II 1

12
2VV

1

2

2 2
a

2

= =

Zb
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

= =
−

( )Z Zb aZ ZZ

ZZa

2

By voltage-division rule,

V
Z

Z Z
V

Z

Z Z
V

Z Z

Z Z
V

G
V

V

Z Z

Z Z

b

a bZ Z

a

a bZ Z

b aZ Z

a bZ Z

b aZ Z

a bZ Z

2VV 1 1 11VV
Z Z

VV
Z Z

VV

12GG
2VV

1VV

= =

= =

 Example 12.21  For the network shown in Fig. 12.37, determine Z
11

 (s), G
12

 (s) and Z
12

 (s).

V1 V2

I1

+

+ −

−

Zb

Za Zb

Za

I1
2

I1
2

Fig. 12.36
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V2

+

−

V1

I1

+

−

1 Ω

1 F

1 F

1 Ω I2 = 0

Fig. 12.37

Solution The transformed network is shown in Fig. 12.38.

V1

+

−

V2

+

−

s

I3

I1

1

1

1 I2 = 0

s
1

Fig. 12.38

Applying KVL to Mesh 1,

V
s

I I1 1VV II 31
1

+= 1
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

 ...(i)

Applying KVL to Mesh 2,

V
s

I I2 1VV 3

1
= I1II  ...(ii)

Applying KVL to Mesh 3,

− + +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

=

= ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

I
s

I

I
s

s
I

1 3+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

I

3 1= ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

II

2
1

0

2 1+s

 ...(iii)

Substituting Eq. (iii) in Eqs. (i) and (ii),

V
s

I
s

s
I

s

s

s

s
I

s

s
1II1VV 1 1II

2

1
1

2 1s

1

2 1s

3 1s
+1= ⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

− ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=
+⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

=
+ 3s

(22s
I

V
s

I
s

s
I

s s

s
I

+

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

= +I =
+⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

1

1

2 1s +
2 1+s

1

2 1VV = II 1

2

1

)

( )s2 1s +

Hence, Z
V

I

s

s
11

1VV

1

2 3 1s
( )s

( )s2 1s
= =

+ 3s

Z
V

I

s s

s

G
V

V

s s

s

12
2VV

1

2

12GG
2VV

1VV

2

2

2 1

2 1

3 1s

( )s
( )s2 1s

( )s

= =
+ s2s

= =
+ s2s

+ 3s



12.5 Analysis of Non-Ladder Networks 12.19

 Example 12.22  For the network shown in Fig.12.39, fi nd the driving-point admittance Y
11

 and 

transfer admittance Y
12

.

V1

I1 I2

+
−

1 F 1 F

1 Ω1 Ω

1 Ω

Fig. 12.39

Solution The transformed network is shown in Fig. 12.40.

V1

I1

I1

I2

s
I3

I2

+
− 1 1

1

1

s
1

Fig. 12.40

Applying KVL to Mesh 1,

V
s

I I
s

I1 1VV II 2 3I
1

1
1

+= ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

+ −I2  ...(i)

Applying KVL to Mesh 2,

0 2
1 1

1 22 3+⎛
⎝⎝⎝

⎞
⎠
⎞⎞
⎠⎠

+
s

I
s

I3  ...(ii)

Applying KVL to Mesh 3,

0
1 1 2

11 2 3= − + +2 +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠s

I1
s

I
s

I3  ...(iii)

Writing these equations in matrix from,

V s s

s s

s s s

I

I

I

1 1VV II

20

0

1
1 1

1

1 2
1 1

1 1 2
1

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎥
⎦⎦

⎥⎥ =

+ −1 1

+

− +

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎦⎦

⎥⎥ 33

1
1

⎡

⎣

⎢
⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

=I1

Δ
Δ
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Δ =

+ −

+

− +

+= ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠

+⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−

1
1 1

1

1 2
1 1

1 1 2
1

1
2

⎛
⎝⎜
⎛⎛
⎝⎝

1
⎞
⎠⎟
⎞⎞
⎠⎠

1 2⎞⎞⎞ ⎛⎛⎛
1

s s

s s

s s s

s⎝⎝⎝s ⎠⎠⎠ s

11
1

2
1

1 1 1 1
2 2

1
s s s s s s

⎡

⎣
⎢
⎣⎣

⎤

⎦
⎥
⎤⎤

+−11
⎛
⎝
⎛⎛ ⎞

⎠⎟
⎞⎞
⎠⎠

+
⎡

⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
− ⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

( )111 ( )1 22
1

5 22

2

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

=
+ 5

s

s 5+ 5

s

Δ1

1

1 2

1
1

0 2
1 1

0
1 2

1

2
1 2

1
1

=

−

+

+

= +1 2
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
=

V1
s

s s

s s

V11
s s⎠⎠⎠ ⎝⎝⎝ s

V11VVVV
2

2

2 52 1s5

s

+5s5⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

I V
s

s
1 1I VI V

2

2

2 5s2 1

5 2s

+s5

+ 5s

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

Hence,  Y
I

V

s

s
11YY

1

1VV

2

2

2 5s2 1

5 2s
= =

+s5

+ 5s

I

s
V

s

s

s s

V
s s

V
s s

2
2

2

1VV

1VV
2 1VV

2

1
1

1

1 0
1

1
0

2
1

2
1

2
V

s21

=

=

+ −V1VV1

+− 0

= − + +1
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= −
+s2

Δ
Δ

Δ
11

2 1

5 2

2

2 1

2

2

s

I V2 1

s s

s 5

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

+ 2s2

+ 55

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

Hence, Y
I

V

s s

s
12YY

2

1VV

2

2

2 1

5 2s
= = −

+ s2s

+ 5s

 12.6    POLES AND ZEROS OF NETWORK FUNCTIONS

The network function F(s) can be written as ratio of two polynomials.

F
N

D

a s a s a a

b s b s b s b

n
n

n
n

mb m
mb m

( )s
( )s

( )s
= =

+ +a sn + +a s

+ +b sb m + +b s

−

−
1

1
1 0s a+s

1
1

1 0b s bb+b sb

…
…

where a
0
, a

1
, …, a

n
 and b

0
, b

1
, …, b

m
 are the coeffi cients of the polynomials N(s) and D(s). These are real 

and positive for networks of passive elements. Let N(s) = 0 have n roots as z
1
, z

2
, ……, z

n
 and D(s) = 0

have m roots as p
1
, p

2
, ……, p

m
. Then F(s) can be written as
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F H( )s
( )s z ( )s z ( )s zn

( )s p ( )s p ( )s pm

=
z

p

)(s z)(s

)(s p)(s

…
…

where 
a

b

n

mb
is a constant called scale factor and z

1
, z

2
, …, z

n
, p

1
, p

2
, …, p

m
 are complex frequencies. When 

the variable s has the values z
1
, z

2
, …, z

n
, the network function becomes zero; such complex frequencies 

are known as the zeros of the network function. When the variable s has values p
1
, p

2
, …, p

m
, the network

function becomes infi nite; such complex frequencies are known as the poles of the network function.

A network function is completely specifi ed by its poles, zeros and the scale factor.

If the poles or zeros are not repeated, then the function is said to be having simple poles or simple zeros. If 

the poles or zeros are repeated, then the function is said to be having multiple poles or multiple zeros. When 

n > m, then (n – m) zeros are at s =  ∞, and for m > n, (m − n) poles are at s = ∞.

The total number of zeros is equal to the total number of poles. For any 

network function, poles and zeros at zero and infi nity are taken into account 

in addition to fi nite poles and zeros.

Poles and zeros are critical frequencies. The network function becomes 

infi nite at poles, while the network function becomes zero at zeros. The 

network function has a fi nite, non-zero value at other frequencies.

Poles and zeros provide a representation of a network function as shown 

in Fig. 12.41. The zeros are shown by circles and the poles by crosses. This 

diagram is referred to as pole-zero plot.

 12.7 
   RESTRICTIONS ON POLE AND ZERO LOCATIONS FOR DRIVING-POINT 

FUNCTIONS [COMMON FACTORS IN N(S) AND D(S) CANCELLED]

(1) The coeffi cients in the polynomials N(s) and D(s) must be real and positive.

(2) The poles and zeros, if complex or imaginary, must occur in conjugate pairs.

(3)  The real part of all poles and zeros, must be negative or zero, i.e., the poles and zeros must lie in 

left half of s plane.

(4) If the real part of pole or zero is zero, then that pole or zero must be simple.

(5)  The polynomials N(s) and D(s) may not have missing terms between those of highest and lowest 

degree, unless all even or all odd terms are missing.

(6)  The degree of N(s) and D(s) may differ by either zero or one only. This condition prevents 

multiple poles and zeros at s = ∞.

(7)  The terms of lowest degree in N(s) and D(s) may differ in degree by one at most. This condition 

prevents multiple poles and zeros at s = 0.

12.8 
   RESTRICTIONS ON POLE AND ZERO LOCATIONS FOR TRANSFER 

FUNCTIONS [COMMON FACTORS IN N(S) AND D(S) CANCELLED]

(1)  The coeffi cients in the polynomials N(s) and D(s) must be real, and those for D(s) must be positive.

(2) The poles and zeros, if complex or imaginary, must occur in conjugate pairs.

(3)  The real part of poles must be negative or zero. If the real part is zero, then that pole must be 

simple.

(4)  The polynomial D(s) may not have any missing terms between that of highest and lowest degree, 

unless all even or all odd terms are missing.

jw

0
s

Fig. 12.41 Pole-zero plot
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(5)  The polynomial N(s) may have terms missing between the terms of lowest and highest degree, 

and some of the coeffi cients may be negative.

(6) The degree of N(s) may be as small as zero, independent of the degree of D(s).

(7) For voltage and current transfer functions, the maximum degree of N(s) is the degree of D(s).

(8)  For transfer impedance and admittance functions, the maximum degree of N(s) is the degree of 

D(s) plus one.

 Example 12.23  Test whether the following represent driving-point immittance functions.

(a) 
5s 3s 2s 1

s 6s 266 0

4 23
3

+ −3s23s +
6s66

 (b) 
s + s + 5s+ 2

s +6s + 9s

3 2+ s
4 3+6s 2

 (c) 
s + 3s+ 2

s +6s+ 2

2

2

Solution

(a)  The numerator and denominator polynomials have a missing term between those of highest and lowest 

degree and one of the coeffi cient is negative in numerator polynomial. Hence, the function does not 

represent a driving-point immittance function.

(b)  The term of lowest degree in numerator and denominator polynomials differ in degree by two. Hence, the 

function does not represent a driving-point immittance function.

(c) The function satisfi es all the necessary conditions. Hence, it represents a driving-point immittance function.

 Example 12.24  Test whether the following represent transfer functions.

(a) G =
3s+ 2

5s + 4s +1
21 3 2+ 4s

 (b) a12

2

=
2s + 5s+1

s+7
 (c) Z =

1

s + 2s
21 3

Solution

(a)  The polynomial D(s) has a missing term between that of highest and lowest degree. Hence, the function 

does not represent a transfer function.

(b) The degree of N(s) is greater than D(s). Hence the function does not represent a transfer function.

(c) The function satisfi es all the necessary conditions. Hence, it represents a transfer function.

 Example 12.25  Obtain the pole-zero plot of the following functions.

(a) F(s) =
s(s+(( 2)

(s+1)(s1 + 3)3
  (b) F(s) =

s(s+(( 1)

(s+ 2) (2 s+(( 3)2

(c) F(s) =
s(s+(( 2)

(s+1+ j1)(s+1- j1)
 

(d) F(s) =
(s+1) (1 s+(( 5)

(s+ 2)(s2 + 3 j2)(s+ 3 - j2)

2

+

(e) F(s) =
s + 4

(s+ 2)(s2 + 9)9

2

2
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Solution

(a) The function F(s) has zeros at s = 0 and s = − 2 and poles at s = − 1 and s = − 3.

The pole-zero plot is shown in Fig. 12.42.

jw

0
s

−3 −2 −1

Fig. 12.42

(b) The function F(s) has zeros at s = 0 and s = −1 and poles at s = −2, −2 and s = −3.

The pole-zero plot is shown in Fig. 12.43.

−3 −2 −1 0

jw

s

Fig. 12.43

(c) The function F(s) has zeros at s = 0 and s = −2 and poles at s = −1 −j1 and s = −1 + j1.

The pole-zero plot is shown in Fig. 12.44.

jw

− j1

j1

s

−2 −1 0

Fig. 12.44

(d)  The function F (s) has zeros at s = −1, −1 and s = −5 and poles at s = −2, s = −3 + j2 and s = −3 − j2. The 

pole-zero plot is shown in Fig. 12.45.

jw

s

−5 −4 −3 −2 −1

j1

− j1

j2

− j2

0

Fig. 12.45
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(e)  The function F (s) has zeros at s = j2 and s = −j2 and poles at s = −2, s = j3 and s = −j3. The pole-zero 

plot is shown in Fig. 12.46.

jw

s

j3

j2

j1

− j1

− j2

− j3

0−2 −1

Fig. 12.46

 Example 12.26  Find poles and zeros of the impedance of the network shown in Fig. 12.47 and plot 

them on the s-plane.

Z (s)
1

2

1 F

2 Ω H

Fig. 12.47

Solution The transformed network is shown in Fig. 12.48.

Z
s

s

s s

s

s

s s

s s
( )s

( )s

( . )

( )s
= +

+
= +

+
= =

1 2
2

2
2

1 2

4

2 4s s+ +s 2(s 5 2s +s2 2(4+ + 2(
×

==
2 25 1 25 1( .0 . )4 ( .0 . )4

( )+ 4

s j+25.0+ s j25 −.+ 0

s (

The function Z (s) has zeros at s = −0.25 + j1.4 and s = −0.25 − j1.4 and poles at s = 0 and s = −4 as shown 

in Fig. 12.49.

jw

s

j1.4

− j1.4

0
−3−4 −1−2 − 0.25

Fig. 12.49

Z (s)
s

2
2

s
1

Fig. 12.48
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 Example 12.27  Determine the poles and zeros of the impedance function Z (s) in the network 

shown in Fig. 12.50.

Z (s) 4 F

1

2

1

6
Ω

Ω

Fig. 12.50

Solution The transformed network is shown in Fig. 12.51.

Z (s)

1

2

1

4s

1

6

Fig. 12.51

Z s

s

s s
( )s

( )s

. ( )
= +

+
= + = =

+
=

+1

2

1

4

1

6
1

4

1

6

1

2

1

4 6s +
4 8s +

2(

2

2 3s +
0. 2

×

ss +1 5

The function Z(s) has zero at s = −2 and pole at s = −1.5.

 Example 12.28  Determine Z(s) in the network shown in Fig. 12.52. Find poles and zeros of Z(s) 

and plot them on s-plane.

Z (s) 1

20
F

1 H

4 Ω

Fig. 12.52

Solution The transformed network is shown in Fig. 12.53.

Z (s) 20
4s

s

Fig. 12.53
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Z s s

s

s
s

s
s

s

s

s

s
( )s

( )s
= +s

+
= +s = +s

+
=

+
=

+
20

4

20
4

80

4 2s + 0

20

5

2) +) 0

5

5 2s +s 02×

++

=
+

5

5 3 5 3

5

( .2 . )71 ( .2 . )71s j+5.+ 2 s j5 −.2+
s

The function Z(s) has zeros at s = –2.5 + j3.71 and s = –2.5 –j 3.71 and pole at s = –5.

The pole-zero diagram is shown in Fig. 12.54.

jw

s

j3.71

− j3.71

0−2−3−4−5 −1

Fig. 12.54

 Example 12.29  For the network shown in Fig. 12.55, plot poles and zeros of function 
I

I

0

i

.

2 H

0.5 F

4 Ω

Ii

I0

Fig. 12.55

Solution The transformed network is shown in Fig. 12.56.

By current-division rule,

I I
s

s
s

I

I

s

s s

s

s s

i

i

0

0

2 2

4 2

4 2
2

4 2s 2 2

+ +s2

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟⎠⎠
⎟⎟

=
+s22

=
+

( )s4 2 ( )s 2+
++

=
1

s ( )+ 2s

( )+1s + ( )1+s

The function has zeros at s = 0 and s = –2 and double poles at s = –1.

The pole-zero diagram is shown in Fig. 12.57.

2s

4

Ii

I0

s
2

Fig. 12.56
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jw

s

−4 −3 −2 −1
0

Fig. 12.57

 Example 12.30   Draw the pole-zero diagram of I

I

2

1

 for the network shown in Fig. 12.58.

10 H

200 Ω

I1

I2

250 μF

Fig. 12.58

Solution The transformed network is shown in Fig. 12.59.

10s

200

I1

I2

250 × 10−6s

1

Fig. 12.59

By current-division rule,

I I s

s
s

I

I s s s

2 1II
6

6

2

1
2

1

250 10
1

250 10
10 200

400

20 400

400

+ +s10

=
+ +s20

=
+

−

−

×

×

( 1011 17 32− j17j1717 )32323232 ( .10 17+ +s j )

The function has no zero and poles at s = –10 + j17.32 and s = −10 −j17.32.

The pole-zero diagram is shown in Fig. 12.60.
jw

s

j17.32

−j− 17.32

−10 0

Fig. 12.60
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 Example 12.31  For the network shown in Fig. 12.61, draw pole-zero plot of 
V

V

cVV

1VV
.

I1

V1
1 Vc

+

−

+
−

1 Ω

2

−
+ 5I12Vc

1 H F

Fig. 12.61

Solution The transformed network is shown in Fig. 12.62.

I1

V1
2 Vc

+

−

+
−

−
+ 5I12Vc

s

c

s

1

Fig. 12.62

Applying KVL to the left loop,

V
1
 − 1I

1
 + 2V

c
 = 0

I
1
 = V

1
 + 2V

c

Applying KCL at Node C,

5
2

0

5
2

0

5 10
2

0

20

1

1

I1

V

s

V

s
V

s

s
V

V V101

V

s

s
V

V
s

c cVV VV

cVV
cVV

cVV
cVV

cVV

cVV

+ +c =

+ + =VcVV

+V10 cVV + =VcVV

( )21V V21 cVVV2 cVV

+ +++⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠
= −

= −
+ +

= −
+

2

2
5

10

20 2

10

1 19

2

1

1
2

s

s
V1

V

V1

s

s s+ 20

s

s

cVV

( .+ 0s + 0 )( . )9

The function has zero at s = 0 and poles at s = − 0.1 and s = −19.9.

The pole-zero diagram is shown in Fig. 12.63.

jw

s

−2−20 −1 −0.1
0

Fig. 12.63
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 Example 12.32  Find the driving point admittance function and draw pole-zero plot for the network 

shown in Fig. 12.64.

I1

V1 V21

+

−

+
−

−
+ 10I10.1V2

0.5s

22

Fig. 12.64

Solution Applying KVL to the left loop,

V V

I
V V

1 1V IV 2V

1
1 2V VV V

2 0I1I 1 0V2VV

0 1

2

I1II

=

.

 ...(i)

Applying KCL at Node 2,

10
0 5 1

0

10
2

0

10
2

1 0

10
2

1
2 2

1 2 2

1 21

1

I1

V2

s

V2

I1
s

V V2 2

I1
s

2

I1

s

+ +2 =

+ V2 =

++ ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠

+
+
ss

V

s

s
V I

V
s

s
I

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=
+

2VV

2 1V IV I

2 1VV II= −

0

2
10

10

2
 ...(ii)

Substituting Eq. (ii) in Eq. (i),

I

V
s

s
I

V
s

s
I

I

1

1 1VV II

1 1VV II

1

0 1
10

2

2
0 5 0 05

10

2

1
0 5

=
+ 0 1

+
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

= +V1VV0 5
+

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

+

. V1VV5V1VV5

ss

s
V

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=
2

0 5 1VV

Hence, Y
I

V s

s

s

s s

s

s
11YY

1

1VV

0 5

1
0 5

2

0 2

0 5 2

0 5 1

1 5 2
= =

+
+

=
+

+ +s0 5
=

+
+

. (5 )
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The function has zero at s = −2 and pole at s = −1.33. The pole-zero diagram is shown in Fig 12.65.

jw

0
s

−3 −2 −1−1.33

Fig. 12.65

 Example 12.33  For the network shown in Fig. 12.66, determine 
V

I
.

2VV

g

 Plot the pole-zero diagram of 
V

I

2VV

g

.

V2

+

−

1 F 1 F

1 H

1 ΩIg

I2 = 0

Fig. 12.66

Solution The transformed network is shown in Fig. 12.67.

1 1Ig V2

+

−

1
s

s

1
s

VcVbIbVa I2 = 0

Fig. 12.67

V V V

I
V

s

V
sV V V

V s I V s V V s

c bV VV V

b
b cVV VV

a bV sV I bVV

=VbVV

= +b = +sV

s Is I = s =V

2VV

2 2V VV+VV 2VV

2 2V VV VV

1 1
( )s +s 1

( )s +s 1 ( 22
2

2
2

2
2 2

3

1

1 1
2

+

= + + +2 =2

V2s 1+

I
V V

s

I = V22 s V2V2 2V2 sg
a a+

V VV V
b

)

( )2 1+s s 1+ ( )2 122s s 1+1 ( )1s 1+1 ( +++ +2 3+ 22
2s3+ V2)

Hence, 
V

I s sg

2VV
3 2

1

2 3s2 2
=

s2s +

The function has no zeros. It has poles at s = −1, s = −0.5 + j1.32 and s = −0.5 –j1.32,

The pole-zero diagram is shown in Fig. 12.68.
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jw

s

−2 −1 − 0.5

j1.32

−j− 1.32

0

Fig. 12.68

 Example 12.34  For the transfer function H(s) =
V

V
=

10

s + 3s+10

0VV

iVV 2
, realise the function using the 

network shown in Fig. 12.69. Find L and C when R = 5 W.

Vi V0

L

C R

+

−

+
−

Fig. 12.69

Solution The transformed network is shown in Fig. 12.70.

Vi V0

Ls

Cs
R

+

−

+
−

1

Fig. 12.70

Simplifying the network as shown in Fig. 12.71,

Vi V0Z (s)

+

−

+
−

Ls

Fig. 12.71

Z

R
Cs

R
Cs

R

RCsCC
( )s =

+
=

+

×
1

1 1
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V V

R

RCsCC

Ls
R

RCsCC

V

V

R

RLC s Ls R

LC

s
RC

s
LC

iVV

iVV

0VV

0VV
2

2

1

1
1

1 1

+

+
+

=
+ +Ls

=
+ +s

 ...(i)

But V

V siVV

0VV
2

10

3 1s 0
=

+ 3s

 ...(ii)

and R = 5 Ω
Comparing Eq. (ii) with Eq. (i),

1
3

1
10

RC

LC

=

=

Solving the above equations,

L

C

=

=

1 5

1

15

. H5

F

 Example 12.35  Obtain the impedance function Z(s) for which pole-zero diagram is shown in Fig. 12.72.

jw

0
s

−3 −2 −1

Z (∞ ) = 1

Fig. 12.72

Solution The function Z(s) has poles at s = –1 and s = –3 and zeros at s = 0 and s = –2.

Z H
s

H

s
s

s
s s

( )s
( )s

( )s ( )
= =

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

)(s)(s

1
2

1
1

1
3

2

2

For s = ∞,

Z H H( )
( )( )

=
1

)(

When Z(∞) = 1,

H = 1

Z
s

( )s
( )s

( )s ( )
=

))(s)(s
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 Example 12.36  Obtain the admittance function Y(s) for which the pole-zero diagram is shown in

Fig. 12.73.

jw

s

−2 −1

j1

− j1

0

Y(∞ ) = 1

Fig. 12.73

Solution The function Y(s) has poles at s = –1 + j1 and s = −1 −j1 and zeros at s = 0 and s = −2.

Y H
s

H
s

H
s

s
( )s

( )s

( )s j ( )s j

( )s

( )s ( )j

( )s
= = =

j j ) j2 2( )( j 2 +++
=

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

2 2+

1
2

1
2 2

2

2

2

s
H

s
s

s
s s

For s =  ∞,

Y H H( )
( )

( )
=

When Y (∞) = 1,

H = 1

Y
s

s s
( )s

( )s
=

+ 2 2+s2

 Example 12.37  A network and its pole-zero confi guration are shown in Fig. 12.74. Determine the 

values of R, L and C if Z (j0) = 1.

R

Ls

Z (s)
Cs

1

jw

j

s

− j

− 51.5−3

√√

√√111

2

111

2

0

Fig. 12.74

Solution Z Cs

Cs

Ls R

LCs RCC Cs

C
s

R

L

s
R

L
s

( )s

( )Ls R

( )Ls R

=
+)R

=
+

+RCs
=

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+

1

1 1

1

2
2 ++

1

LC

...(i)
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From the pole-zero diagram, zero is at s = –3 and poles are at s j s jj s1 5
111

2
1 5

111

2
ssjj d

Z H
s

s j s j

Z H
s

s

( )s

sj

( )s

=
+

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

=
+

+(

3

1 5
111

2
1 5

111

2

3

1 5. )) −
⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

=
+

+
2

2 2
111

2

3

3 3+ 0
j

H
s

s + 3

When Z (j0) = 1,

1
3

30

10

10

3 302

= ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

=
+ 3

H

H

Z
s 3+ 3

( )s
( )3+s  ...(ii)

Comparing Eq. (ii) with Eq. (i),

R

L

C

LC

=

=

=

3

1
10

1
30

Solving the above equations,

C

L

R

=

=

=

1

10
1

3
1

F

H

Ω

 Example 12.38  A network is shown in Fig. 12.75. The poles and zeros of the driving-point function 

Z(s) of this network are at the following places:

Poles at − ±
1

2
j

3

2
Zero at –1

If Z (j0) = 1, determine the values of R, L and C.

Z (s)

R

Ls

1

Cs

Fig. 12.75
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Solution 
Z Cs

Ls R
Cs

Ls R

LCs RCC Cs

C
s

R

L

s
R

L
s

( )s

( )Ls R

=
+ +R

=
+

+RCs
=

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ +s

1

1 1

1

12
2

LCLL

...(i)

The poles are at −
1

2

3

2
± j  and zero is at –1.

Z H
s

s j s j

H
s

s j

( )s =
+

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

=
+

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

⎛

1

1

2

3

2

1

2

3

2

1

1

2

3

2

2

⎝⎝⎝⎝⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

=
+

+ +2 2

1

1
H

s

s s+

When Z (j0) = 1, 

1

1

1

12

=

=

=
+

+ +

H

H

Z
s

s s+

( )1

( )1

( )s  ...(ii)

Comparing Eq. (ii) with Eq. (i),

C

R

L

LC

=

=

=

1

1

1
1

Solving the above equations,

C = 1 F

L = 1 H

R = 1 Ω

 Example 12.39  The pole-zero diagram of the driving-point impedance function of the network of 

Fig. 12.76 is shown below. At dc, the input impedance is resistive and equal to 2 W. Determine the values of 

R, L and C.

Cs

Ls

R
1

Z (s)

jw

j4

s

− j4

−−1−2
0

Fig. 12.76

Solution Z Cs

Ls R
Cs

Ls R

LCs RCC Cs

C
s

R

L

s
R

L
s

( )s

( )Ls R

=
+ +R

=
+

+RCs
=

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ +s

1

1 1

1

12
2

LCLL

 ...(i)

From the pole-zero diagram, zero is at s = –2 and poles are at s = –1+ j4 and s = −1 − j4.
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Z H
s

H
s

H
s

s s
( )s

( )s j ( )s j ( )s ( )j
=

+
=

+
=

+
+

2

j j

2

) j

2

2 1+s 72 2( )( j 2

At dc, i.e., w = 0, Z (     j0) = 2

2
2

17
17

17
2

2 172

=

=

=
+

+ 2

H

H

Z
s

s s+ 2
( )s  ...(ii)

Comparing Eq. (ii) with Eq. (i),

1
17

2

1
17

C
R

L

LC

=

=

=

Solving the above equations,

C

L

R

=

=
=

1

17
1

2

F

H

Ω

 Example 12.40  The network shown in Fig. 12.77 has the driving-point admittance Y (s) of the form

Y(s)(( H
(s s )(s s )

(s s )

1 )(s s
=

− s1 )(s

−

(a) Express s
1
, s

2
, s

3
 in terms of R, L and C.

(b)  When s
1
 = –10 + j104, s

2
 = –10 – j104 and Y (j0) = 10–1 mho, fi nd the values of R, L and C and 

determine the value of s
3
.

Y (s)

R

Ls
1

Cs

Fig. 12.77

Solution

(a) Y Cs
Ls R

CsCC

Ls R

LCs RCC Cs

Ls R

C s
R

L
s

LC
( )s

( )Ls R
= +Cs

+
=

+
=

+RCs

+
=

+ +s
⎛
⎝
⎛⎛
⎝⎝1 1C(Ls R +CsCCR 1

1
2

2 ⎞⎞
⎠⎟
⎞⎞⎞⎞
⎠⎠

+s
R

L

...(i)

But Y
H

( )s
( )s s ( )s s

( )s s
=

s )(s ss
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where s s

R

L

R

L LC R

L

R

L LC
1 2s

2

2

4

2 2 2

1
=

− ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−
= − ⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−
±

±

s
R

L
3 = −

(b) When s
1

= −10 + j104

s
2

= − 10 − j104

Y H
s s

H
s s

s s
( )s

( )s j ( )s j
= =

+s0 104 4)( j

3

2 8+s+ 20 10

3

 ...(ii)

Comparing Eq. (ii) with Eq. (i),

R

L
s

Y H

=

= −

=

20

203

2 8

( )s
( )s s +s0 102 8+ +s20 10

( )s + 20

At s = j0,

Y H

H

Y
s

( )j
( )

( )s
( )s s

(

20
10

0 0. 2 10

0 0. 2 10

8
1

6

6
2 8

= =H

=

=
ss

−

−

−

++ 20)
 ...(iii)

Comparing Eq. (iii) with Eq. (i),

C

LC

L

R

L
R

=

=

=

=

=

0 0 0 0−

1
10

1

2

20

10

8

.02 1 20 0 F

H

6× μ0 0.0 01 20= 0.0

Ω

 Example 12.41  A network and pole-zero diagram for driving-point impedance Z(s) are shown in

Fig. 12.78. Calculate the values of the parameters R, L, G and C if Z(j0) = 1.

R

Ls
Cs

G
1

Z (s)

jw

j3

j2

j1

s

−−3 −2 −1
0

− j1

− j2

− j3

Fig. 12.78
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Solution It is easier to calculate Y(s) and then invert it to obtain Z(s).

Y G CsCC
Ls R Ls R

LCsCC s GR

Ls R

Z

( )s
( )G CsCC ( )s ( )GL RG C

= G +
+

=
+

=
GLGG + +

+
1 1( )G CC ( )Ls RCsCC Ls + 12

( )((
( ) ( )Y (

Ls R

LCs (CC s) GR

C
s

R

L

s
G

C

R

L

= =
+

( + +
=

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

++ ⎛
⎝
⎛⎛
⎝⎝

⎞
1

1

1

2
2

⎠⎠⎟
⎞⎞
⎠⎠⎠⎠

+
+⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

s
GR

LC

1
 ...(i)

From the pole-zero diagram, zero is at s = –2 and poles are at s = –3 ± j3.

Z H H H
s

s
( )s

( )s

( )s j ( )s j

( )s

( )s ( )j
= = =

+
+j j ) j

2

6 1s +s2 2( )( j 2 88

When Z (j0) = 1,

1
2

18

9

9
2

=

=

=

H

H

Z( )s
( )2

( )6 182 + 6s 6+ 6
 ...(ii)

Comparing Eq. (ii) with Eq. (i),

1
9

2

6

1
18

C

R

L

G

C

R

L

GR

LC

=

=

+ =

+
=

Solving the above equation,

C

L

G

R

=

=

=

=

1

9

9

10

4

9

9

5

F

H

�

Ω

 Example 12.42  A series R-L-C circuit has its driving-point admittance and pole-zero diagram is 

shown in Fig. 12.79. Find the values of R, L and C.
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jw

s

−1

j25

− j25

0

Scale factor = 1

Fig. 12.79

Solution The function Y (s) has poles at s = –1 + j25 and s = –1 – j25 and zero at s = 0.

Y H
s

H
s

H
s

s
( )s

( )s j ( )s j ( )s ( )j
= = =

+sj )(s ) j 2s) + 6262 2( )( j ) 2

Scale factor H = 1

Y
s

s s
( )s =

+ +s2 2 626
 ...(i)

For a series RLC circuit,

Z R Ls
Cs

LCs RCC Cs

Cs

L s
R

L
s

LC

s

Y
Z

s

L

( )s

( )s
( )s

= +R + = =
+ +s

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= =

1 1LCs RCC C +RCs

1

1

2
2

ss
R

L
s

LC

2 1
+ +s

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 ...(ii)

Comparing Eq. (i) with Eq. (ii),

L

LC

C

R

L
R

=

=

=

=

=

1

1
626

1

626

2

2

H

F

Ω

12.9    TIME-DOMAIN BEHAVIOUR FROM THE POLE-ZERO PLOT

The time-domain behaviour of a system can be determined from the pole-zero plot. Consider a network 

function

F H( )s
( )s z ( )s z ( )s zn

( )s p ( )s p ( )s pm

=
z

p

)(s z)(s

)(s p)(s

…

…

The poles of this function determine the time-domain behaviour of f(t).The function f(t) can be determined 

from the knowledge of the poles, the zeros and the scale factor H. Figure 12.80 shows some pole locations 

and the corresponding time-domain response.
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 (i)  When pole is at origin, i.e., at s = 0, the function f(t) represents steady-state response of the

circuit i.e., dc value. (Fig. 12.80)

jw

t

f (t)

s
0

0

Fig. 12.80 Pole at origin

 (ii) When pole lies in the left half of the s-plane, the response decreases exponentially. (Fig. 12.81)

jw

t

f (t)

s
0

0

Fig. 12.81 Pole in left half of the s-plane

 (iii)  When pole lies in the right half of the s-plane, the response increases exponentially. A pole in the 

right-half plane gives rise to unbounded response and unstable system. (Fig. 12.82)

jw

t

f (t)

s
0

0

Fig. 12.82 Pole in right half of the s-plane

 (iv)  For s = 0 +jw
n
, the response becomes f (t) = Ae± jwnt = A(cos w

n
t ± j sin w

n
t).The exponential

response e ± jwnt may be interpreted as a rotating phasor of unit length. A positive sign of 

 exponential e  jwnt indicates counterclockwise rotation, while a negative sign of exponential  

e−jwnt indicates clockwise rotation. The variation of exponential function e  jwnt with time is thus 

 sinusoidal and hence constitutes the case of sinusoidal steady state. (Fig. 12.83)

jw

t

f (t)

s
0 0

Fig. 12.83 Poles on jw   -axis
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 (v)  For s = s
n
 + jw

n
, the response becomes f (t) = Aest = Ae(sn+jwnt) = Aesnt ejwnt. The response esnt is 

an exponentially increasing or decreasing function. The response ejwnt is a sinusoidal function. 

Hence, the response of the product of these responses will be over damped sinusoids or under 

damped sinusoids (Fig. 12.84).

jw
f (t)

t

t

f (t)

s

jw

s

(a) 

(b)

0 0

0 0

 Fig. 12.84  (a) Complex conjugate poles in left half of the S-plane

(b) Complex conjugate poles in right half of the S-plane

 (vi)  The real part s of the pole is the displacement of the pole from the imaginary axis. Since s is 

also the damping factor, a greater value of s (i.e., a greater displacement of the pole from the

imaginary axis) means that response decays more rapidly with time. The poles with greater

displacement from the real axis correspond to higher frequency of oscillation (Fig. 12.85).

jw

s

f (t)

f (t)

t

t

(a)

0

0

0

Fig. 12.85 Nature of response with diff erent positions of poles
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jw

s

f (t)

f (t)

t

t

(b)

0

0

0

Fig. 12.85 (Continued)

12.9.1  Stability of the Network

Stability of the network is directly related to the location of poles in the s-plane.

(i) When all the poles lie in the left half of the s-plane, the network is said to be stable.

(ii) When the poles lie in the right half of the s-plane, the network is said to be unstable.

(iii) When the poles lie on the jw axis, the network is said to be marginally stable.

(iv) When there are multiple poles on the jw axis, the network is said to be unstable.

(v)  When the poles move away from jw axis towards the left half of the s-plane, the relative stability of 

the network improves.

12.10    GRAPHICAL METHOD FOR DETERMINATION OF RESIDUE

Consider a network function,

F H( )s
( )s z ( )s z ( )s zn

( )s p ( )s p ( )s pm

=
z

p

)(s z)(s

)(s p)(s

 

 

By partial fraction expansion,

F
K K Km

( )s
( )s p ( )s p ( )s pm

= + + +1 2

The residue K
i
 is given by

K F Hi s p
i

( )s ps p−ss ( )s
( )p zzzz ( )p zp ( )p znz

( )p pppp ( )p pp (
| →

)( p zppp

)( p pppp

 

 p ppp mp )

Each term (p
i
 – z

i
) represents a phasor drawn from zero z

i
 to pole p

i
.

Each term (p
i
 – p

k
), i ≠ k, represents a phasor drawn from other poles to the pole p

i
.

K H
p

i
iProduct of phasors (polar form) from each zero to

Product of phasoraa s (polar form) from other poles to pi



12.10 Graphical Method for Determination of Residue 12.43

The residues can be obtained by graphical method in the following way:

(1) Draw the pole-zero diagram for the given network function.

(2) Measure the distance from each of the other poles to a given pole.

(3) Measure the distance from each of the other zeros to a given pole.

(4) Measure the angle from each of the other poles to a given pole.

(5) Measure the angle from each of the other zeros to a given pole.

(6) Substitute these values in the required residue equation.

The graphical method can be used if poles are simple and complex. But it cannot be used when there are 

multiple poles.

 Example 12.43  The current I(s) in a network is given by I(s)s
2s

(s 1)(s 2)
.=

+ +1)(s
 Plot the pole-zero 

pattern in the s-plane and hence obtain i(t).

Solution Poles are at s = –1 and s = –2 and zero is at s = 0. The pole-zero plot is shown in Fig. 12.86.

By partial-fraction expansion,

I
K

s

K

s
( )s =

+
+1 2K
+

1 2s +

jw

0
s

−2 −1

Fig. 12.86

The coeffi cients K
1
 and K

2
, often referred as residues, can be evaluated from he pole-zero diagram. From 

Fig. 12.87,

K H
A

B
1

Phasor from zero at origin to pole at

Phasor from pole at tB o pole ataa A
= ⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2
1 180

1 0
2

∠ °180

∠ °0
∠180° = −2

jw

0
s

−2 −1

B A

Fig. 12.87

From Fig. 12.88,

K H
B

A
2

Phasor from zero at origin to pole at

Phasor from pole at tA o pole ataa B
=

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2
2 80

1
4

∠ °180

8 °0
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jw

0
s

−2 −1

B A

Fig. 12.88

I
s s

( )s = −
+

+
+

2

1

4

2

Taking inverse Laplace transform,

           i (t) = –2e−t + 4e−2t

 Example 12.44  The voltage V(s) of a network is given by

V
s

( )s
( )s ( )s s(

=
3

)()(s2

Plot its pole-zero diagram and hence obtain v (t).

Solution V
s s

( )s
( )s ( )s s ( )s ( )s j ( )s j

= =
j

3

)()(s

3

)()(s )(s2

Poles are at s = –2 and s = –1 ± j1 and zero is at s = 0 as shown in Fig. 12.89.

jw

s

−1−2

j1

−j− 1

0

A

B

C

Fig. 12.89

By partial-fraction expansion,

V
K

s

K

s j

K

s j
( )s

*

=
+

+ +1 2K
+ 2

2 1s 1 1s 1

The coeffi cients K
1
, K

2
 and K

2
* can be evaluated from the pole-zero diagram. 

From Fig. 12.90,

       K1

3
3

2 80
3 180 3= =

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
= =3 180 −

( )OA

( )BA ( )CA ( )2 35 ( )2 35

∠ °180

135− 135
°
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0

A

B

C

jw

s

−1−2

− j1

j1

135°

135°
180°

2√√

2√√

Fig. 12.90

From Fig. 12.91,

K

K

2

2

3
3

3

2

3

2

= =
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
=

=

( )OB

( )AB ( )CB

( )2 35

( )2 5 ( )2 90

*

135

45 90

A

B

C

jw

s

−1−2

−j− 1

j1

135°45°

90°
0

2√√2√√

Fig. 12.91

V ( )s
( )s ( )s j ( )s j

= − + +
3

3

2

j

3

2

j

Taking inverse Laplace transform,

v e e e e
e et e t t t

j

( )t ( )j ( )j= − +ee t( )j⎡
⎣

⎤
⎦

+− jj j −
−

3
3

2
3 2e t +

3

2

2t (⎡2tt 3 t) (t)t) t) 2t) ⎤t)
1

×
jj

t te t
1

2

2
3 3te 2

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠
= − t2 cos

 Example 12.45  Find the function v(t) using the pole-zero plot of following function:

V(s)
(s 2)(s 6)

(s 1)(s 5)
=

+ +2)(s

+ +1)(s

Solution If the degree of the numerator is greater or equal to the degree of the denominator, we have to 

divide the numerator by the denominator such that the remainder can be expanded into partial fractions.
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V
s

s s
( )s

( . )

( )s ( )
=

+
+

= +
+

= +
2

2 2+
+

8 1s +s 2

6 5s +s +
1

2 7s +
6 5s +s

1
2(s 5

)(s)(s

By partial fraction expansion,

V
K

s

K
( )s = +

+
+1

1 5s +
1 2K

+

K
1
 and K

2
 can be evaluated from the pole-zero diagram shown in Fig. 12.92 and Fig. 12.93.

jw

0
s

−3.5−5 −1

 

jw

0
s

−3.5−5 −1

 Fig. 12.92 Fig. 12.93

From Fig. 12.92

K

K

V

1

2

2
2 5 0

4 0

5

4

2
1 5 80

4

3

4

1

5

= ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

= ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

= +1( )s

∠ °0

∠ °0

∠ °180

∠180°

44

1

3

4

5s s1+
+

+

From Fig. 12.93

Taking inverse Laplace transform, 

v e et t( )t ( )t( )t= (t +−tδ
5

4

3

4

5

 Example 12.46  The pole-zero plot of the driving-point impedance of a network is shown in

Fig. 12.94. Find the time-domain response.

jw

s

−1

j1

−j− 1

0

Scale factor = 5

Fig. 12.94

Solution The function Z(s) has poles at s = −1 + j1 and s = −1 −j1 and zero at s = 0.
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Z H
s

( )s
( )s j ( )s j

=
j j

Scale factor H = 5

Z
s

( )s
( )s j ( )s j

=
5

j j

By partial fraction expansion,

Z
K

s j

K

s j
( )s

*

= +1 1KK
+

1 1j 1 1j

The coeffi cients K K1 1K KK Kd *  can be evaluated from the pole-zero 

diagram. From Fig. 12.95,

K1

5 5

2 90
3 54 5= = =

( )OAOA

( )BA

( )2 35135

∠ °90
∠ °45

K

Z
s j s j

1 3 54 5

3 54

1 1j

3 54 5

1 1j

*

( )s
. .54 5 3

= 3 54

= +

∠ °45

∠ °4545 ∠ °45

Taking inverse Laplace transform,

z(t) = 3.54 ∠ 45° e(−1−j1)t + 3.54 ∠−45°e(−1+j1)t

 Example 12.47  Evaluate amplitude and phase of the network function F(s)
4s

s 2s 22
=

2s
 from the 

pole-zero plot at s = j2.

Solution F
s

s s

s
( )s

( )s j ( )s j
=

+
=

4

2 2+s

4

j j2

The pole-zero plot is shown in Fig. 12.96.

At s = j2,
jw

s

j2

j1

0−1

− j1

Fig. 12.96

| | =
jProduct of phasor magnitudes from all zero to 2j

Product of phasohh r magnitudes from all poles to 2j
= =

2
0 447

( )2 ( )10
.

jw

s

−1

j1

−j− 1

0

A

B

Fig. 12.95



12.48 Network Analysis and Synthesis

φ( )φ tan tan tan .) = ⎛
⎝⎝⎝

⎞
⎠⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

−− −1 1tan
⎛⎛⎛ ⎞⎞⎞ −⎛⎛⎛ ⎞⎞⎞ 12

0

3

1

1

1
90 56° °71 56 4544 26 56° °26 56= − .

 Example 12.48  Using the pole-zero plot, fi nd magnitude and phase of the function

F
s

at s j( )s
( )s ( )

( )s
.=

)(s)(s
4

Solution F
s

( )s
( )s ( )

( )s
=

)(s)(s

The pole-zero plot is shown in Fig. 12.97.

At s = j4,
jw

j4

−1−2−3

s
0

Fig. 12.97

⎪ ⎪=
j

( )j
Product of phasor magnitudes from all zeros to 4

product of phasopp r magnitudes from all poles to 4j
= =

( ) ( )

( ) ( )
.

) (
1 1. 5

φ ω( )φ ωφ ω tan tan tan tan= ⎛
⎝⎝⎝

⎞
⎠⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− ⎛
⎝⎝⎝

⎞
⎠⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠

−1 1tan
⎛⎛⎛ ⎞⎞⎞ −⎛⎛⎛ ⎞⎞⎞ 1 1tan

⎛⎛⎛ ⎞⎞⎞ −4

1

4

3

4

0

4

2
⎟⎟
⎞⎞⎞⎞
⎠⎠⎠⎠

= 75 96. ° + 53.13° − 90° − 63.43° = −24.34°

 Example 12.49  Plot amplitude and phase response for

F(s)
s

s 10
=

Solution

F
j

j
( )j

( )j

)
ω

ω
ω

ω

=
+

+

10

1002
⎪ ⎪F( )j ) =⎪



12.10 Graphical Method for Determination of Residue 12.49

v ÃF(jv)Ã

0 0

10 0.707

100 0.995

1000 1

The amplitude response is shown in Fig. 12.98.

φ ω
ω ω ω

( )φ ωφ ω tan tan tan= ⎛
⎝⎝⎝

⎞
⎠⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= − ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− −1 1ω
tan

⎛⎛⎛ ⎞⎞⎞ −ω⎛⎛⎛ ⎞⎞⎞ 1

0 1⎠⎠⎠ ⎝⎝⎝ 0
90

10
°

v e (v)

0 90°

10 45°

100 5.7°

1000 0°

The phase response is shown in Fig. 12.99

Example 12.50  Sketch amplitude and phase response for F(s)
s 10

s 10
=

Solution 

F
j

j
( )j )

ω
ω

ω

ω

=
+
−

+

+

10

10

100

100

2

2
⎪ ⎪F f =( )ffω

For all w, magnitude is unity.

The amplitude response is shown in Fig. 12.100.

φ ω
ω ω ω

( )φ ωφ ω tan tan tan= ⎛
⎝⎝⎝

⎞
⎠⎠⎠

−tan
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− −1 1ω
tan

⎛⎛⎛ ⎞⎞⎞ −ω⎛⎛⎛ ⎞⎞⎞ 1

10 10
2

10

The phase response is shown in Fig. 12.101.

v e(v)

0 0°

10 90°

100 168.6°

1000 178.9°

F(j(( w)

w
0 10 100 1000

1

0.7

Fig. 12.98

f (w)

w

10 100 1000

90°

45°

Fig. 12.99

F(j(( w)

w
0

1

Fig. 12.100

f (w)

w

100 100 1000

180°

90°

Fig. 12.101
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Determine the driving-point impedance 12.1 
V

I

1VV

1

,

transfer impedance 
V

I

2VV

1

 and voltage transfer

ratio 
V

V

2VV

1VV
 for the network shown in Fig. 12.102.

V1

I1

+

−

V2

+

−

2 H

2 Ω5 Ω

F
1
2

I2 = 0

Fig. 12.102

V

I

s

s s

V

I

s

s s

V

V

s

s

1VV

1

2
2VV

1
2

2VV

1VV 2

7 7s2 5

2 1

2

1

2

7 7s2 5

=
+s7

s + +s

⎡

⎣
⎢
⎡⎡

⎣⎣

=
+s7

⎤

⎦⎥
⎤⎤

⎦⎦

; ;
I 2

=

For the network shown in Fig. 12.103, 12.2 

determine 
V

V

V

I

2VV

1VV

2VV

1

and .
V2V

V1

I1

+

−

V2

+

−

2 H

F
1
2

F
1
2

F
1
2

I2 = 0

Fig. 12.103

V

V

s

s

V

I

s

s

2VV

1VV

2

2

2VV

1

2

2

1

2 1s2

2 2s2

=
+

=
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
;

( )23 2s2

Find the open-circuit transfer impedance 12.3 Z
21

and open-circuit voltage ratio G
21

 for the 

ladder network shown in Fig. 12.104.

+

−

V1

+

−

V2

I1

2 F 2 F

1 H2 H I2 = 0
1

1′

2

2′

Fig. 12.104

Z
s

G
s

21 3 21 4 2

1

2 3s3

1

4 7s4 1
= =

+s27

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

,

For the two-port network shown in Fig. 12.4 

12.105, determine Z
11

, Z
21

 and voltage transfer 

ratio G
21

(s).

V1

I1

+

−

V2

+

−

1 F

2 H

1 H

2 Ω

Fig. 12.105

Z
s s

s s
Z

s

s s

G
s

s s

11

3 2

2 21 2

21 3 2

2s3 3 2s

2 1 2 1

2s3 3 2s

=
+s2s

+ s2s
=

+ s2s

⎡

⎣
⎢
⎡⎡

⎣⎣

=
+s2s

⎤

, ,Z21 2

⎦⎦⎥
⎤⎤
⎦⎦⎦⎦

Draw the pole-zero diagram of the following 12.5 

network functions:

(i) F
s

s
( )s =

+
+

2

2

4

6 4s +s

(ii) F
s s

( )s =
+
5 1s − 2

4 1+s 32

(iii) F
s

( )s
( )s s

=
+1

s2 2)

(iv) F
s

s s
( )s

( )s
=

+

2

4 2+ 1+s2

Exercises



Exercises 12.51

(v) F
s s

s
s2

2

2

+

(vi) F
s s

s =
2

2s−s

(vii) F
s

s s
s

2

2

+s

(viii) F s
s

s s
=

s

s

For the network shown in Fig. 12.106, draw 12.6 

the pole-zero plot of the impedance function 

Z(s).

F 4 ΩZ (s) 1

20

2

Fig. 12.106

Z
j

s
s

s

+
⎡ ⎤1. s

5

For the network shown in Fig. 12.107, draw 12.7 

the pole-zero plot of driving-point impedance 

function Z(s).

10 

10 Ω5 Ω

Z (s)

Fig. 12.107

Z
s

s
s

s )
=

+s5(s 0.

0. 3

Find the driving-point impedance of the 12.8 

network shown in Fig. 12.108. Also, fi nd 

poles and zeros.

Z (s

1 F 2 F

1 H

Fig. 12.108

Z
s

s
s

s . )

+
+s

⎡

⎣
⎢

1. 0

0

2

Find network functions 12.9 
V

V

V

I1

and  for the 

network shown in Fig. 12.109 and plot poles 

and zeros of 
V

V

s

s
 

V

I1

+

V

+

−
1

21 Ω

1 Ω

Fig. 12.109

V

V

V

I1

1

2

2

2s 2 1s+s

⎡

⎣

⎤

⎦s 2 1s+s

s 2 1s+s

For the network shown in Fig. 12.110, 12.10 

determine 
V

I
and

V

I1 1

 Plot the poles and 

zeros of 
V

I1

. 

I1 1 H 2 H

V V

+

1

+

1
2

Fig. 12.110

V

I s

V

I s1 1

s 2

s

2

s
=

+s ⎤

⎦
⎥,
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For the network shown in Fig. 12.111, 12.11 

determine 
V

I

V

V

1VV

1

2VV

1VV
and . Plot the pole and zeros 

for 
V

V

2VV

1VV
.

1 F 2 F

1 H 1 H V2

+

−

I1

V1

+

−

Fig. 12.111

V

I

s

s s

1VV

1

4 2

3

3 1s2

2
=

+ 3s2

+

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

For the network shown in Fig. 12.112, plot the 12.12 

poles and zeros of transfer impedance function.

I1 1 H 1 H

V1

+

−

1 Ω 1 Ω V2

−

+

Fig. 12.112

V

I s

2VV

1

1

2
=

+
⎡

⎣⎢
⎡⎡

⎣⎣

⎤

⎦⎥
⎤⎤

⎦⎦

For the network shown in Fig. 12.113, 12.13 

determine 
V

I

V

V

1VV

1

2VV

1VV
and .

V2V
 Plot the poles and 

zeros of transfer impedance function.

V2

+

−

V1

+

−

I1

1 F2 F

2 H 4 H

Fig. 12.113

V

I

s s

s

V

I s

V

V s s

1VV

1

4 2

3

2VV

1
3

2VV

1VV 4 2

16 0 1

8 3s3

1

8 3s3

1

16 0 1

=
+ +s210

=
⎡

⎣
⎢
⎡⎡

⎣⎣

=
+s2+10

⎤

⎦

, ,
I 3

⎥⎥
⎤⎤⎤⎤

⎦⎦⎦⎦

Obtain the impedance function for which the 12.14 

pole-zero diagram is shown in Fig. 12.114.

jw

j1

Z ( j0) = 1

− j1

−1−2 0
s

Fig. 12.114

Z
s s

( )s
( )s

=
+

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

2 (s

2 2+s2

For the network shown in Fig. 12.115, poles 12.15 

and zeros of driving point function Z(s) 

are,

Poles: (–1 ± j4); zero: –2

If Z (j0) = 1, fi nd the values of R, L and C.

Cs

Ls

R
1

Z (s)

Fig. 12.115

1
2

17
Ω, 0.5 Η, F

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

For the two-port network shown in Fig. 12.16 

12.116, fi nd R
1
, R

2
 and C. 

V

V s

2VV

1VV 2

0 2

3 2s
=

+ 3s

V2V1
R2

R1

C

+

−

+

−

1 H

Fig. 12.116

3

5

1

15
0 5Ω Ω

1
, , . F0 5

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦



Objective-Type Questions 12.53

Of the four networks 12.1 N
1
, N

2
, N

3
 and N

4
 of Fig. 

12.117, the networks having identical driving-

point functions are

(a) N
1
 and N

2
 (b) N

2
 and N

4

(c) N
1
 and N

3
 (d) N

1
 and N

4

1 Ω

1 Ω

1 Ω

1 Ω

2 Ω

2H

1 Ω2H

1F

2 Ω 1F

1F

1F
1H

2H

1F

N1

N3

N4

N2

Fig. 12.117

The driving-point impedance 12.2 Z(s) of a 

network has the pole-zero locations as shown 

in Fig. 12.118. If Z(0) = 3, then Z(s) is

jw

j1

− j1

−1−3
0

s

Fig. 12.118

(a) 
3

2 32

( )3

s 2+ 22
 (b) 

2

2 22

( )3

s s+ 2s2

(c) 
3

2 22

( )3

s s22
 (d) 

2

2 32

( )3

s 22

For the circuit shown in Fig. 12.119, the 12.3 

initial conditions are zero. Its transfer function 

H
V

V
( )s

( )s

( )s
= 0VV

1VV
 is

10 kΩ 10 mH

100 μFvi (t ) v0

+

−

+

−

Fig. 12.119

(a) 
1

0 102 610 6s s10 +610 s10610
 (b) 

10

0 10

6

2 310 6s s10 +310 s10310

For the given network function, draw the 12.17 

pole-zero diagram and hence obtain the time 

domain voltage.

V ( )s
( )

( )s ( )
=

5 (s

))(s)(s

 [v(t) = 3e−2t + 2e−7t]

A transfer function is given by 12.18 

Y
s

( )s
( )s j ( )s j

.=
10

j )(s
 Find time-

domain response using graphical method.

5 26 18 4 5 18 4. .26 18 . .6 8( )5 15 ( )5 1518 418⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤(5 5° (5 5 26(5(5e e5 18 418 46 185 265 2626+(5 °151515)5 j t)15

Objective-Type Questions
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(c) 
10

0 10

3

2 310 6s s10 +310 s10310
 (d) 

10

0 10

6

2 610 6s s10 +610 s10610

In Fig. 12.120, assume that all the capacitors 12.4 

are initially uncharged. If v
i
(t) = 10 u(t), then 

v
0
(t) is given by

1 kΩ

4 kΩ
4 μF

1 μFvi (t ) v0 (t )

++

− −

Fig. 12.120

(a) 8 e–0.004 t (b) 8 (1–e–0.004 t)

(c) 8 u(t) (d) 8

A system is represented by the transfer 12.5 

function 
10

( )1 ( )2
.

)(1)1
 The dc gain of this 

system is

(a) 1 (b) 2

(c) 5 (d) 10

Which one of the following is the ratio 12.6 
V

V

24VV

13VV

of the network shown in Fig. 12.121.

1 Ω

1 Ω 1 Ω

1 Ω

1

3

2

4

Fig. 12.121

(a) 
1

3
 (b) 

2

3

(c) 
3

4
 (d) 

4

3

A network has response with time as shown 12.7 

in Fig. 12.122. Which one of the following 

diagrams represents the location of the poles 

of this network?

x (t )

t
0

Fig. 12.122

jw

s

jw

(a)
0 0

00
(c) (d)

(b)

s

jw

s

jw

s

Fig. 12.123

The transfer function of a low-pass 12.8 RC

network is 

(a) (RCs) (1 + RCs) (b) 
1

1+ RCsCC

(c) 
RCsCC

RCsCC1+
 (d) 

s

RCsCC1+

The driving-point admittance function of the 12.9 

network shown in Fig. 12.124 has a 

LR C

Fig. 12.124

 (a) pole at s = 0 and zero at s = ∞
 (b) pole at s = 0 and pole at s = ∞
 (c) pole at s = ∞ and zero at s = 0

 (d) pole at s = ∞ and zero at s = ∞



Answers to Objective-Type Questions 12.55

Answers to Objective-Type Questions

The transfer function 12.10 Y
I

V
12YY

2

1VV
( )s

( )s

( )s
=  for the 

network shown in Fig. 12.125 is

V1(s )

I2(s )

1 H 1 F

1 Ω

Fig. 12.125

(a) 
s

s s

2

2 1+ +s
 (b) 

s

s +1

(c) 
1

1s +
 (d) 

s

s

+
+
1

12

As the poles of a network shift away from 12.11 

the x axis, the response

(a) remains constant

(b) becomes less oscillating

(c) becomes more oscillating

(d) none of these

1. (c) 2. (b) 3. (d)

7. (d) 8. (b) 9. (a)

 4. (c)  5. (c) 6. (a)

10. (a) 11. (c)
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